The 1986 accident at the Chernobyl nuclear power plant remains the most serious nuclear accident in history, and excess thyroid cancers, particularly among those exposed to releases of iodine-131 remain the best-documented sequelae. Failure to take dose-measurement error into account can lead to bias in assessments of dose-response slope. Although risks in the Ukrainian-US thyroid screening study have been previously evaluated, errors in dose assessments have not been addressed hitherto. Dose-response patterns were examined in a thyroid screening prevalence cohort of 13,127 persons aged <18 at the time of the accident who were resident in the most radioactively contaminated regions of Ukraine. We extended earlier analyses in this cohort by adjusting for dose error in the recently developed TD-10 dosimetry. Three methods of statistical correction, via two types of regression calibration, and Monte Carlo maximum-likelihood, were applied to the doses that can be derived from the ratio of thyroid activity to thyroid mass. The two components that make up this ratio have different types of error, Berkson error for thyroid mass and classical error for thyroid activity. The first regression-calibration method yielded estimates of excess odds ratio of 5.78 Gy−1 (95% CI 1.92, 27.04), about 7% higher than estimates unadjusted for dose error. The second regression-calibration method gave an excess odds ratio of 4.78 Gy−1 (95% CI 1.64, 19.69), about 11% lower than unadjusted analysis. The Monte Carlo maximum-likelihood method produced an excess odds ratio of 4.93 Gy−1 (95% CI 1.67, 19.90), about 8% lower than unadjusted analysis. There are borderline-significant (p = 0.101–0.112) indications of downward curvature in the dose response, allowing for which nearly doubled the low-dose linear coefficient. In conclusion, dose-error adjustment has comparatively modest effects on regression parameters, a consequence of the relatively small errors, of a mixture of Berkson and classical form, associated with thyroid dose assessment.
With a binary response Y, the dose-response model under consideration is logistic in flavor with pr(Y=1 | D) = R (1+R) By means of Parametric Full Maximum Likelihood and Regression Calibration (under the assumption that the data set of true doses has lognormal distribution), Nonparametric Full Maximum Likelihood, Nonparametric Regression Calibration, and by properly tuned SIMEX method we study the influence of measurement errors in thyroid dose on the estimates of λ 0 and EAR. The simulation study is presented based on a real sample from the epidemiological studies. The doses were reconstructed in the framework of the Ukrainian-American project on the investigation of Post-Chernobyl thyroid cancers in Ukraine, and the underlying subpolulation was artificially enlarged in order to increase the statistical power. The true risk parameters were given by the values to earlier epidemiological studies, and then the binary response was simulated according to the dose-response model.-
We consider a Poisson model, where the mean depends on certain covariates in a log-linear way with unknown regression parameters. Some or all of the covariates are measured with errors. The covariates as well as the measurement errors are both jointly normally distributed, and the error covariance matrix is supposed to be known. Three consistent estimators of the parameters-the corrected score, a structural, and the quasi-score estimators-are compared to each other with regard to their relative (asymptotic) efficiencies. The paper extends an earlier result for a scalar covariate.
Abstract. A homoscedastic errors-in-variables linear regression model is considered. The total least squares estimator is studied. New conditions for the consistency and strong consistency of the total least squares estimator are proposed. These conditions are weaker than those proposed by Kukush and Van Huffel (Metrika 59 (2004), 75-97).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.