High harmonic emission occurs when an electron, liberated from a molecule by an incident intense laser field, gains energy from the field and recombines with the parent molecular ion. The emission provides a snapshot of the structure and dynamics of the recombining system, encoded in the amplitudes, phases and polarization of the harmonic light. Here we show with CO(2) molecules that high harmonic interferometry can retrieve this structural and dynamic information: by measuring the phases and amplitudes of the harmonic emission, we reveal 'fingerprints' of multiple molecular orbitals participating in the process and decode the underlying attosecond multi-electron dynamics, including the dynamics of electron rearrangement upon ionization. These findings establish high harmonic interferometry as an effective approach to resolving multi-electron dynamics with sub-Angström spatial resolution arising from the de Broglie wavelength of the recombining electron, and attosecond temporal resolution arising from the timescale of the recombination event.
The tunnelling of a particle through a barrier is one of the most fundamental and ubiquitous quantum processes. When induced by an intense laser field, electron tunnelling from atoms and molecules initiates a broad range of phenomena such as the generation of attosecond pulses, laser-induced electron diffraction and holography. These processes evolve on the attosecond timescale (1 attosecond ≡ 1 as = 10(-18) seconds) and are well suited to the investigation of a general issue much debated since the early days of quantum mechanics--the link between the tunnelling of an electron through a barrier and its dynamics outside the barrier. Previous experiments have measured tunnelling rates with attosecond time resolution and tunnelling delay times. Here we study laser-induced tunnelling by using a weak probe field to steer the tunnelled electron in the lateral direction and then monitor the effect on the attosecond light bursts emitted when the liberated electron re-encounters the parent ion. We show that this approach allows us to measure the time at which the electron exits from the tunnelling barrier. We demonstrate the high sensitivity of the measurement by detecting subtle delays in ionization times from two orbitals of a carbon dioxide molecule. Measurement of the tunnelling process is essential for all attosecond experiments where strong-field ionization initiates ultrafast dynamics. Our approach provides a general tool for time-resolving multi-electron rearrangements in atoms and molecules--one of the key challenges in ultrafast science.
Many methods have been proposed for efficient storage of molecular hydrogen for fuel cell applications. However, despite intense research efforts, the twin U.S. Department of Energy goals of 6.5% mass ratio and 62 kg͞m 3 volume density has not been achieved either experimentally or via theoretical simulations on reversible model systems. Carbon-based materials, such as carbon nanotubes, have always been regarded as the most attractive physisorption substrates for the storage of hydrogen. Theoretical studies on various model graphitic systems, however, failed to reach the elusive goal. Here, we show that insufficiently accurate carbon-H 2 interaction potentials, together with the neglect and incomplete treatment of the quantum effects in previous theoretical investigations, led to misleading conclusions for the absorption capacity. A proper account of the contribution of quantum effects to the free energy and the equilibrium constant for hydrogen adsorption suggest that the U.S. Department of Energy specification can be approached in a graphite-based physisorption system. The theoretical prediction can be realized by optimizing the structures of nano-graphite platelets (graphene), which are lightweight, cheap, chemically inert, and environmentally benign. equilibrium constants ͉ hydrogen storage ͉ quantum effects A recent report on hydrogen clathrate hydrate (1) shows that under high pressure, molecular hydrogen can be trapped in the clathrate cavities reaching a mass ratio close to that defined by the U.S. Department of Energy (DOE) (2). However, the hydrogen clathrate is only stable under high pressure or at very low temperature. Simple sterical considerations suggest that the use of a ''help gas'' to stabilize the clathrate hydrate under less severe thermodynamic conditions would lead to the deterioration of the hydrogen storage mass ratio and may not be viable for mobile applications. On the other hand, there have also been numerous experimental studies on the binding capacity of molecular hydrogen with graphitic substrates (3, 4). At technologically viable conditions, reliably reproducible results are still far from the DOE goal (3, 4). In the attempt to understand and improve the storage capacity of graphitic materials, calculations have been made on many models. Some of the calculations were based on empirical interaction potentials (5-9), and the others used potentials derived from quantum mechanical calculations (10-16). The role of quantum behavior of molecular hydrogen at low temperatures has also been investigated (6,8,(17)(18)(19). Unfortunately, the binding capacity for hydrogen at near-ambient conditions has not been calculated, including the quantum effects and accurate, ab initio-based interaction potentials. To date, there has not been a reliable theoretical study indicating that the DOE goal of 6.5% mass ratio can or cannot be achieved in pure graphitic materials.The interaction of nonpolar H 2 molecules with physisorption substrates in graphitic system is mainly the London dispersion. Accurate...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.