The growing developments in general semantic networks, knowledge graphs and ontology databases have motivated us to build a large-scale comprehensive semantic network of technology-related data for engineering knowledge discovery, technology search and retrieval, and artificial intelligence for engineering design and innovation. Specially, we constructed a technology semantic network (TechNet) that covers the elemental concepts in all domains of technology and their semantic associations by mining the complete U.S. patent database from 1976. To derive the TechNet, natural language processing techniques were utilized to extract terms from massive patent texts and recent word embedding algorithms were employed to vectorize such terms and establish their semantic relationships. We report and evaluate the TechNet for retrieving terms and their pairwise relevance that is meaningful from a technology and engineering design perspective. The TechNet may serve as an infrastructure to support a wide range of applications, e.g., technical text summaries, search query predictions, relational knowledge discovery, and design ideation support, in the context of engineering and technology, and complement or enrich existing semantic databases. To enable such applications, we made the TechNet public via an online interface and APIs for public users to retrieve technologyrelated terms and their relevancies.
Engineers often need to discover and learn designs from unfamiliar domains for inspiration or other particular uses. However, the complexity of the technical design descriptions and the unfamiliarity to the domain make it hard for engineers to comprehend the function, behavior, and structure of a design. To help engineers quickly understand a complex technical design description new to them, one approach is to represent it as a network graph of the design-related entities and their relations as an abstract summary of the design. While graph or network visualizations are widely adopted in the engineering design literature, the challenge remains in retrieving the design entities and deriving their relations. In this paper, we propose a network mapping method that is powered by Technology Semantic Network (TechNet). Through a case study, we showcase how TechNet’s unique characteristic of being trained on a large technology-related data source advantages itself over common-sense knowledge bases, such as WordNet and ConceptNet, for design knowledge representation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.