The fractions of various functional groups in graphene oxide (GO) are directly related to its electrical and chemical properties and can be controlled by various reduction methods like thermal, chemical and optical. However, a method with sufficient controllability to regulate the reduction process has been missing. In this work, a hybrid method of thermal and joule heating processes is demonstrated where a progressive control of the ratio of various functional groups can be achieved in a localized area. With this precise control of carbon-oxygen ratio, negative differential resistance (NDR) is observed in the current-voltage characteristics of a two-terminal device in the ambient environment due to charge-activated electrochemical reactions at the GO surface. This experimental observation correlates with the optical and chemical characterizations. This NDR behavior offers new opportunities for the fabrication and application of such novel electronic devices in a wide range of devices applications including switches and oscillators.
This paper presents a simple method for determining the dielectric constant of microwave PCB substrates. In the presented method, a bandpass microstrip filter designed on the PCB substrate with a user-predicted dielectric constant value is implemented for a given center frequency. The simulation results of the designed bandpass filter are obtained by the help of microwave design software; XFDTD®. Experimental results regarding the filter frequency characteristic are accomplished by means of a vector network analyzer. The simulation results of the designed filter are modified to overlap with the experimental ones by varying the dielectric constant value. When the simulation and experimental results are overlapped, the value of dielectric constant is accurately selected. In order to illustrate the validity of proposed method, the dielectric constant values of flame resistant-4 (FR4) substrates are acquired at IEEE 802.11b/g and IEEE 802.11a wireless local area network (WLAN) application frequencies. The results obtained by using the presented method agree with the previous studies in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.