Uncertainty in the duration of surgical procedures can cause long patient wait times, poor utilization of resources, and high overtime costs. We compare several heuristics for scheduling an Outpatient Procedure Center. First, a discrete event simulation model is used to evaluate how 12 different sequencing and patient appointment time‐setting heuristics perform with respect to the competing criteria of expected patient waiting time and expected surgical suite overtime for a single day compared with current practice. Second, a bi‐criteria genetic algorithm (GA) is used to determine if better solutions can be obtained for this single day scheduling problem. Third, we investigate the efficacy of the bi‐criteria GA when surgeries are allowed to be moved to other days. We present numerical experiments based on real data from a large health care provider. Our analysis provides insight into the best scheduling heuristics, and the trade‐off between patient and health care provider‐based criteria. Finally, we summarize several important managerial insights based on our findings.
We propose a multistage stochastic mixed-integer programming formulation for the assignment of surgeries to operating rooms over a finite planning horizon. We consider the demand for and the duration of surgery to be random variables. The objective is to minimize three competing criteria: expected cost of surgery cancellations, patient waiting time, and operating room overtime. We discuss properties of the model and an implementation of the progressive hedging algorithm to find near-optimal surgery schedules. We conduct numerical experiments using data from a large hospital to identify managerial insights related to surgery planning and the avoidance of surgery cancellations. We compare the progressive hedging algorithm to an easy-to-implement heuristic for practical problem instances to estimate the value of the stochastic solution. Finally, we discuss an implementation of the progressive hedging algorithm within a rolling horizon framework for extended planning periods.
Chemotherapy appointment scheduling is a challenging problem due to the uncertainty in premedication and infusion durations. In this paper, we formulate a two‐stage stochastic mixed integer programming model for the chemotherapy appointment scheduling problem under limited availability of nurses and infusion chairs. The objective is to minimize the expected weighted sum of nurse overtime, chair idle time, and patient waiting time. The computational burden to solve real‐life instances of this problem to optimality is significantly high, even in the deterministic case. To overcome this burden, we incorporate valid bounds and symmetry breaking constraints. Progressive hedging algorithm is implemented in order to solve the improved formulation heuristically. We enhance the algorithm through a penalty update method, cycle detection and variable fixing mechanisms, and a linear approximation of the objective function. Using numerical experiments based on real data from a major oncology hospital, we compare our solution approach with several scheduling heuristics from the relevant literature, generate managerial insights related to the impact of the number of nurses and chairs on appointment schedules, and estimate the value of stochastic solution to assess the significance of considering uncertainty.
The number and availability of turnover teams may significantly affect the performance of a surgery schedule. We propose a two-stage stochastic integer programming formulation for setting the patient appointment times for surgeries under limited availability of turnover teams. We assume that a surgery schedule has already been created, and study how the schedule may be refined. We consider the durations of surgical operation and turnover to be random variables. The objective is to minimize the competing criteria of expected patient waiting time and operating room idle time. We discuss an implementation of a heuristic to generate near-optimal surgery schedules. We conduct numerical experiments using data from a large hospital. We compare the heuristic with a well-known and practical procedure used in earlier studies for setting patient appointment times for surgeries. Finally, we evaluate the impact of the number of turnover teams into the surgery schedules with respect to performance criteria of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.