The object of research is the process of obtaining silicon nanomaterials for lithium-ion batteries of energy storage devices, and the subject of research is the technology of gas-phase plasma-chemical synthesis for the production of Si-nanoparticles. In the course of the study, numerical simulation methods were used, which made it possible to determine the parameters of temperature fields, velocities and concentrations. To study the processes of synthesis of nanopowders, a plasma reactor with an electric arc plasma torch of a linear scheme and using an argon-hydrogen mixture as a plasma-forming gas was developed. To analyze the influence of an external magnetic field on the control of the plasma jet parameters, a series of experiments was carried out using an electric arc plasma torch on plasma laboratory facilities with a power of 30 and 150 kW. The influence of a magnetic field on the process of formation and evaporation of a gas-powder flow in a plasma jet was studied by determining the configuration, geometric dimensions, and structure of the initial section of the jet. In this case, the dispersed material – silicon powder was fed to the plasma torch nozzle section according to the radial scheme. Experimental confirmation of the phenomenon of elongation of the high-temperature initial section of the plasma jet in a longitudinal magnetic field has been obtained. The experimental results indicate that the creation of a peripheral gas curtain significantly changes the characteristics of heat and mass transfer in the reactor. It should be expected that for optimization it is possible to exclude the deposition of nanosilicon particles on the walls of the reactor and provide conditions for continuous operation. The effect of two-phase flow, heat transfer, and mass flow of nanoparticles, including the surface of a plasma reactor with limited jet flow, in the processes of obtaining silicon nanopowders has been studied. This made it possible to correct a number of technological characteristics of the process of constructive design of the actions of plasma synthesis of nanopowders. The patterns obtained can be used for constructive and technological design in the creation and development of a pilot plant for high-performance production of nanosilicon powders.
The object of research is a new, potentially effective and practical process for the decontamination of radioactive soil, based on combination of plasma hydroseparation and plasma activation. The cleaning effect is ensured by the destruction of the bonds of radionuclides with soil particles due to a series of electrophysical discharges at which active particles and shock waves appear. In a designed setup, the process of plasma-chemical treatment is implemented in a plasma cell with a self-sustaining pulsating mode of burning an electric discharge, which occurs in an aqueous solution. The setup realizes a resonant increase in the intensity of shock waves, turbulence and multiple expansion of the core, such that the expansion of the plasma-liquid interface becomes a real basis for scaling up the setup. Regardless of the material of the electrodes and in a wide range of electrical conductivity (measured from 100 to 5,000 μS/cm), the restructuring of the combustion regime is accompanied by an increase in the size and stabilization of the luminous zone, fragmentation of bubbles, and an increase in the rate of their evacuation from the discharge zone. The main factors of such a restructuring are the channel dimensions and temperature of the solution. Various materials of the walls of plasma-chemical reactor have been tested: plexiglass, ceramics and stainless steel with the thickness of 2 mm. The maximum increase in the amplitude of resonance oscillations depends on the cell radius. A dynamic pressure, which in an individual discharge is about 5–15 mm of the water column at the mouth of the discharge, increases to 150–200 mm of the water column at the bottom of the plasma cell at resonance. An increase in efficiency is achieved by an optimal choice of the duration of the current phase and the distance between the electrodes, which is 15–30 mm. The voltage drop is 70–80 % across the spark discharge, the rest falls across the solution. The transition of the discharge to a periodic pulsating current mode with an increase in the temperature of the solution has been found. Tests on a mobile plasma-chemical facility for the process of plasma co-precipitation of radionuclides 137Cs, 134Cs and 90Sr with ferrocyanide sorbents under real conditions of hydroseparation of contaminated soil from fields around the Fukushima Daiichi have shown a decrease in organic substances in water by 40 times, and of radioactivity by 75 times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.