Background: Systems of the Internet of Things are actively implementing biometric systems. For fast and high-quality recognition in sensory biometric control and management systems, skeletonization methods are used at the stage of fingerprint recognition. The analysis of the known skeletonization methods of Zhang-Suen, Hilditch, Ateb-Gabor with the wave skeletonization method has been carried out and it shows a good time and qualitative recognition results. Methods: The methods of Zhang-Suen, Hildich and thinning algorithm based on Ateb-Gabor filtration, which form the skeletons of biometric fingerprint images, are considered. The proposed thinning algorithm based on Ateb-Gabor filtration showed better efficiency because it is based on the best type of filtering, which is both a combination of the classic Gabor function and the harmonic Ateb function. The combination of this type of filtration makes it possible to more accurately form the surroundings where the skeleton is formed. Results: Along with the known ones, a new Ateb-Gabor filtering algorithm with the wave skeletonization method has been developed, the recognition results of which have better quality, which allows to increase the recognition quality from 3 to 10%. Conclusion: The Zhang-Suen algorithm is a 2-way algorithm, so for each iteration, it performs two sets of checks during which pixels are removed from the image. Zhang-Suen's algorithm works on a plot of black pixels with eight neighbors. This means that the pixels found along the edges of the image are not analyzed. Hilditch thinning algorithm occurs in several passages, where the algorithm checks all pixels and decides whether to replace a pixel from black to white if certain conditions are satisfied. This Ateb-Gabor filtering will provide better performance, as it allows to obtain more hollow shapes, organize a larger range of curves. Numerous experimental studies confirm the effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.