The aim: Was to evaluate the effectiveness of the use of information technology of intelligent monitoring in solving the problems of assessing the morbidity of a patient with IBD during treatment. Matherials and methods: 183 patients with IBD were observed. Among them 104(56.8%) patients suffered from Crohn’s disease and 79(43.1%) patients had ulcerative colitis. For each patient and each disease, the formation of a list of signs, the extraction of information and knowledge will be carried out according to an individual method. At the lower level, tasks are performed: determination of the list of patient morbidity conditions, the formation of a list of indicators of the patient morbidity conditions, their identification as classes for machine learning models; formation of a list of signs, which identify the state of the patient’s morbidity and whose characteristics obtained after results of medical tests. Results: The number of correctly classified points reached 92%. An analysis of the conditions of patients characterized by incorrectly classified points revealed the information content of this fact. In those cases when the classification results did not coincide with the expert assessment of the patient’s condition, additional factors were found that influenced his condition and whose characteristics were not taken into account in the structure of classifier models. Conclusions: The results of the testing of classifier models indicate the effectiveness of the use of information technology of intelligent monitoring to assess the condition of patients with IBD.
Context. Information monitoring technology is used to reduce information uncertainty about the regularity of air temperature changes during managing work in hard-to-reach places [1]. The task was to create a method for modelling one of the climatic indicators, air temperature, in the given territories in the information monitoring technology structure. Climate models are the main tools for studying the response of the ecological system to external and internal influences. The problem of reducing information uncertainty in making managerial decisions is eliminated by predicting the consequences of using planned control actions using climate modelling methods in information monitoring technology. The information technology of climate monitoring combines satellite observation methods and observations on climate stations, taking into account the spatial and temporal characteristics, to form an array of input data. It was made with the methods for synthesizing models of monitoring information systems [1] and methods of forming multilevel model structures of the monitoring information systems [1] for converting observation results into knowledge, and with the rules for interpreting obtained results for calculating the temperature value in the uncontrolled territories. Objective of the work is to solve the problem of identifying the functional dependence of the air temperature in a given uncontrolled territory on the results of observations of the climate characteristics by meteorological stations in the information technology of climate monitoring structure. Method. The methodology for creating information technologies for monitoring has been improved to expand its capabilities to perform new tasks of forecasting temperature using data from thermal imaging satellites and weather stations by using a new method of climate modelling. A systematic approach to the process of climate modelling and the group method of data handling were used for solving problems of functional dependence identification, methods of mathematical statistics for evaluating models. Results. The deviation of the calculated temperature values with the synthesized monitoring information systems models from the actual values obtained from the results of observations by artificial earth satellites does not, on average, exceed 2.5°С. Temperature traces obtained from satellite images and weather stations at similar points show similar dynamics. Conclusions. The problem of the functional dependence identification of air temperature in uncontrolled territories on the results of observations at meteorological stations is solved. The obtained results were used in the process of creating a new method of climate modelling within information technology of climate monitoring. Experimental confirmation of the hypothesis about the possibility of using satellite images in regional models of temperature prediction has been obtained. The effectiveness of the application of the methodology for the creation of monitoring information technologies during the implementation of the tasks of reducing uncertainty for management decisions during works in non-controlled territories has been proven.
Анотація. У статті описано метод моніторингу стану безпеки локальних корпоративних мереж, який об'єднує процеси синтезу та аналізу моделей поведінки вхідних даних, прогнозування їх значень і моделювання процесів кібератак. Створено моделі-класифікатори кіберзагроз. Характеристики потоків даних надходять у мережу за допомогою датчиків, встановлених у заздалегідь запланованих точках-пастках комп'ютерної мережі. Відбувається класифікація векторів із показників, що характеризують ці кібератаки. Отримані результати представлені у вигляді кількісних і якісних оцінок відповідно до основних положень теорії складних систем. Для підвищення ефективності захисту мережі було запропоновано централізувати обчислювальний процес із використанням грід-інфраструктури та хмарної платформи. Проведено попереднє порівняння грід і хмарної технологій. Трудомістка і обчислювально складна процедура переноситься з локальних обчислювальних мереж у високопродуктивні середовища. За допомогою імітаційних моделей було проведено дослідження змін станів схеми обробки запитів, виходячи з вибірки атак, що надійшли до комп'ютерних систем. Модель, при надходженні вхідних потоків даних, враховує їх вид, а також інтенсивність, запобігаючи використання однотипних атак для здійснення задуманої зловмисником схеми, таким чином нейтралізуючи їх вплив, дозволяючи аналізувати більш складні види кібератак. Крім кібербезпеки, прискорення завдання множинного розпізнавання є актуальним і для багатьох інших важливих додатків, таких як інтелектуальний аналіз даних, прискорена обробка XML-запитів, управління технологією QoS, фільтрація в IP-телефонії, оптимізація кешування тощо.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.