Purpose is to analyze changes in shape and dimensions of a rock mass area, fortified with the help of a polymer, depending upon the density of injection rock bolts as well as the value of initial permeability of enclosing rocks to substantiate optimum process solutions to support roofs within the unstable rocks and protect mine workings against water inflow and gas emission. Methods. Numerical modeling method for coupled processes of rock mass strain and filtration of liquid components of a polymer has been applied. The model is based upon fundamental ideas of mechanics of solids and filtration theory. The problem has been solved using a finite element method. Its solution took into consideration both the initial permeability and the permeability stipulated by mine working driving, injection time of reagents and their polymerization, and effect of po-lymer foaming in the process of mixing of its components. Changes in physicomechanical and filtration characteristics of rock mass during polymer hardening were simulated. It has been taken into consideration that a metal delivery pipe starts operating as a reinforcing support element only after the polymer hardening. Findings. If three and five injection rock bolts are installed within a mine working section then stresses, permeability coefficients, pressure of liquid polymeric composition, and geometry of the fortified area of rock mass have been calculated. It has been shown that rock bolt location is quite important to form a rock-bolt arch. It has been demonstrated for the assumed conditions that if five injection rock bolts are installed within the mine working roof then close interaction between rock-bolt supports takes place; moreover, the integral arch is formed within the mine working roof. Originality. Dependence of change in the polymer reinforced area upon a value of initial permeability of enclosing rocks has been derived. It has been shown that in terms of low values of initial permeability, geometry of rock-bolt supports as well as its size is identified only by means of a value of the unloaded zone around the mine working. In this context, initial permeabi-lity increase results in the enlarged diameter of the reinforced rock mass area in the neighbourhood of the injection rock bolt. Practical implications. The findings are recommended to be applied while improving a method to support the mine working roof and decrease water inflow as well as gas emission from the rocks, being undermined, into the working.
Purpose. To substantiate the informative parameter, to develop the method and equipment for non-destructive testing (NDT) of rock bolt fastening, as an element of geomechanical monitoring of the mine workings state.Methods. Analytical and bench experimental testing of shock-wave processes in the "rock bolt -bonding layerrock massif" system.Findings. It has been established, that the non-destructive shock-wave method is the most satisfying for monitoring the geomechanical state of the "rock bolt -bonding layer -rock massif" system. This method is based on the registration and analysis of rock bolt oscillations, caused by non-normalized hit to the rock bolt end. It has been confirmed, that the most informative parameter is the relaxation time, that is the time over which the amplitude of oscillations decreases by "e" times. It has been shown, that clamping of the resin-grouted rock bolt in massif and its tensioning affects the relaxation time of damped oscillations. Furthermore, the relaxation time is inversely proportional to the degree of the rock bolt clamping, and is linked linearly with an increase in the rock bolt tensioning. The spectral composition of wedge shaped rock bolts self-oscillations, which are caused by impact excitation, depends both on the nature of clamping and on the rock bolt length, and makes it possible to identify the rock bolts by their length.Originality. The existence of a special type of damped longitudinal oscillations of the rock bolt in viscoelastic medium of the bonding layer has been established. The relaxation time of the specified type of oscillations was chosen as an informative parameter. An analytical link has been established between the informative parameter of shock-wave method of monitoring and the main indicators of rock bolt fastening quality: the degree of adhesion with massif and tension value.Practical implications. The method has been improved and equipment has been developed for non-destructive testing of rock bolt fastening, which makes it possible to control in-situ the rock bolt fastening quality, including the geomechanical state monitoring of mine workings.
The goal of the work was to develop a concept of intensification of mining operations, taking into account geomechanical processes occurring in the “rock massif – mining workings – support and protective structures” system. The article is the result of theoretical and experimental research materials analysis and synthesis, carried out for the conditions of coal, non-metallic and iron-ore mines. Positive and negative geomechanical processes and phenomena, occurring during intensification of mining operations, have been substantiated. A set of technical and technological solutions to eliminate the negative phenomena associated with high mining rates development of mineral resources has been proposed. Recommendations, presented in this article, will significantly reduce the conditionally fixed costs of mining production and improve miner’s safety.
When studying risk factors in coal mines, it is necessary, in the first place, to consider factors and properties of the rock massif occurred with the deepening of mining operations in the coal mines, and determine one of the main types of danger: risk of geodynamic phenomena. The geodynamic phenomena occur and develop under the influence of natural and technological factors. Natural factors determine the rock massif proneness of ato geodynamic manifestations or, in other words, its potential danger due to these phenomena. Occurrence of this danger depends on technological factors. Among the dangerous factors of underground coal production to which primarily belong the geodynamic phenomena, the main ones are gas-dynamic phenomena, which are the most complex by their nature and dangerous by consequences due to high dynamic power and release of great amount of gas during a short period of time. Their consequences can be accidents due to sudden gassing and blockage of workings by coal and rock, explosions of methane and coal dust, destruction of the roadway supports, damage of machines and mechanisms, equipment and devices. As the gas-dynamic phenomena in the rocks massif are accompanied by occurrence of various processes differed by their nature, therefore, risks caused by them should be taken into account at mining operations. When considering the gas-dynamic phenomena attention should be paid to the shock wave propagation, as it is one of the gas dynamic processes. Therefore, purpose of this research was to study specific features of the shock wave propagation in the rock massif in order to prevent dangerous consequences. In this article, the authors consider the processes which occur in the rock massif prone to dangerous gas-dynamic phenomena at the shock wave propagation. The methods of rock mechanics, mechanics of continuous media, gas and thermodynamics were used in the research. Analytical researches of processes and numerical analysis of the received results were carried out. It is shown that a sharp increase of thermodynamic parameters under the action of gas-dynamic phenomena can lead to occurrence of the shock waves. It is further established that an explosive air-methane mixture can be formed in cracks, cavities and pores of the face area. At opening the cavities and pores, cases of shock waves formation in air-methane mixture leading to its detonation are possible. Under adverse conditions, this phenomenon can lead to a fire in the roadway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.