The paper is dedicated to the creation of a differential mortar pump with electromagnetic action for pumping finishingmaterial, which is not sensitive to electric energy gaps, and which is at the same time convenient, easy to use, reliable andeconomical in operation. The paper presents the mathematical model of the working process dynamics of a differentialmortar pump with electromagnetic action, which will allow to study common patterns of pumping processes in the pump inthe whole, to solve general problems on their calculation and design, to set and solve problems of reliability control,connected with high-frequency pressure oscillations, the problems of structural optimization and optimal design of all itselements. The control system of a pumping unit with vector controlled asynchronous electric drive is proposed on the basis ofthe concept of inverse dynamics problems in combination with the minimization of local functionality of instantaneousenergy magnitudes, which ensures high-quality pressure regulation under the conditions of parametric perturbations activityand has acceptable energy indices.
Vibration mixers are technological machines that are meant for mixing of different processed medium. A driving force in such machines is realizing by oscillation exciter. In this article, the constructive scheme of the vibration mixer is introduced. Such a mixer has the toroidal working container and is equipped with controlled mechanical centrifugal unbalanced exciters of oscillations with a vertically located unbalanced shaft. The work principle of one of the possible configurations in this exciter is considered and provided. One inflexible and two mobile unbalances are strengthen on its unbalanced shaft. The mobile unbalances by means of independent external action, that is caused by mechanism for managing of mobile unbalances, have an opportunity to change synchronously its positions on the unbalanced shaft directly in time of mixer’s work. The centrifugal inertia forces of inflexible and mobile unbalances make the dynamic wrench that consists of the main vector and the main moment and rotates with unbalanced shaft. It is determined that the value of the main vector and the main moment evaluate the dynamic action of this vibration exciter to the mixer’s working container. The mathematical model of the dynamic action of oscillator exciter on the processed medium of mixer with the toroidal working container is received. Depending on the value of turn angle of mobile unbalances from its starting positions exciter: a) staying in the dynamic balance state; b) is generating the translation force field; c) generates the wrench force field of this or that direction. These opportunities of controlled vibration exciter firmly provide anfractuous circulative motion of the processed medium on the volume of the mixer’s working container. Using of controlled exciter also leaves out the transfers through intermediate resonance frequencies. As its starting and stopping happen in a dynamic balance state, so it leaves out the possibility of manifestation of the “Sommerfeld’s effect” that is harmful for the driven motor, improves the constructive availability of the vibration mixer and increases its efficiency and life duration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.