An automated process is described for the detailed assessment of the in vitro metabolic stability properties of drug candidates in support of pharmaceutical property profiling. Compounds are incubated with liver microsomes using a robotic liquid handler. Aliquots are taken at various time points, and the resulting samples are quantitatively analyzed by liquid chromatography-mass spectrometry utilizing ion trap mass spectrometers to determine the amount of compound remaining. From these data metabolism rates can be calculated. A high degree of automation is achieved through custom software, which is employed for instrument setup, data processing, and results reporting. The assay setup is highly configurable, allowing for any combination of up to six user-selected time points, variable substrate concentration, and microsomes or other biologically active media. The data, based on relative substrate depletion, affords an estimate of metabolic stability through the calculation of half-life (t(1/2)) and intrinsic clearance, which are used to differentiate and rank order drug leads. In general, t(1/2) is the time necessary for the metabolism, following first-order kinetics, of 50% of the initial compound. Intrinsic clearance is the proportionality constant between rate of metabolism of a compound and its concentration at the enzyme site. Described here is the setup of the assay, and data from assay test compounds are presented.
The overnight (16-h) fast is one of the most common experimental manipulations performed in rodent studies. Despite its ubiquitous employment, a comprehensive evaluation of metabolomic and transcriptomic sequelae of fasting in conjunction with routine clinical pathology evaluation has not been undertaken. This study assessed the impact of a 16-h fast on urine and serum metabolic profiles, transcript profiles of liver, psoas muscle, and jejunum as well as on routine laboratory clinical pathology parameters. Fasting rats had an approximate 12% relative weight decrease compared to ad libitum fed animals, and urine volume was significantly increased. Fasting had no effect on hematology parameters, though several changes were evident in serum and urine clinical chemistry data. In general, metabolic changes in biofluids were modest in magnitude but broad in extent, with a majority of measured urinary metabolites and from 1/3 to 1/2 of monitored serum metabolites significantly affected. Increases in fatty acids and bile acids dominated the upregulated metabolites. Downregulated serum metabolites were dominated by diet-derived and/or gut-microflora derived metabolites. Major transcriptional changes included genes with roles in fatty acid, carbohydrate, cholesterol, and bile acid metabolism indicating decreased activity in glycolytic pathways and a shift toward increased utilization of fatty acids. Typically, several genes within these metabolic pathways, including key rate limiting genes, changed simultaneously, and those changes were frequently correlative to changes in clinical pathology parameters or metabolomic data. Importantly, up- or down-regulation of a variety of cytochrome P450s, transporters, and transferases was evident. Taken together, these data indicate profound consequences of fasting on systemic biochemistry and raise the potential for unanticipated interactions, particularly when metabolomic or transcriptomic data are primary end points.
An automated high throughput process, termed the MetFast assay, is described to assess in vitro the general microsomal cytochrome P450 beta-nicotinamide adenine dinucleotide phosphate-mediated first-pass metabolic stability of potential drug candidates as a utility for pharmaceutical profiling. Utilizing robotic protocols with a multiprobe liquid handler, compounds are incubated with liver microsomes from different species. Samples are then analyzed by in-line liquid chromatography (LC)-mass spectrometry (MS) to determine the amount of compound remaining after a certain time, which allows calculation of metabolism rates. To quantitatively assess large numbers of structurally diverse compounds by LC-MS, a strategy based on an iterative two-step process was devised. Initially compounds are qualitatively analyzed by LC-ultraviolet (UV)/MS (step 1) to determine purity (UV detection) and structural integrity (MS detection). This step ensures that only correct and verified compounds with sufficient purity are being assayed to obtain reproducible high data quality. In addition, all necessary information is gathered to automatically generate specific quantitative methods for the subsequent bioanalytical analysis of metabolic stability samples by LC-UV/MS (step 2). In-house-developed, highly flexible and sophisticated data management software, termed SmartReport, is utilized for automated qualitative and quantitative LC-MS analysis set-up, data processing, and results reporting. The integration of key aspects, inherent "universal" collision-induced dissociation settings of ion trap mass spectrometers for tandem mass spectrometric scan functions utilized for compound-specific and sensitive quantitative MS methods, generic fast-LC conditions, generic MS instrument settings, and the functionality of SmartReport software resulted in an analytical process that routinely provides reproducible high-quality metabolic stability data on structurally diverse compounds. Described here is the setup of the MetFast assay, and metabolic stability data from assay validation compounds are given.
The developed software enables the reporting of relative quantities of annotated components while maintaining practical turnaround times. Each component annotation in the report is validated using both calculated isotopic peaks patterns and experimentally determined retention time data on standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.