Microgel of a water‐soluble monomer [2‐(N‐morpholino)ethyl methacrylate (MEMA)] was successfully prepared in aqueous media via emulsion polymerization by using a novel water‐soluble block copolymer as stabilizer. Characterization studies confirmed monodisperse spherical morphologies of microgels with a diameter of 280 nm at neutral pH. These microgels exhibited multi‐responsive behavior by responding solution pH, temperature, ionic strength, type of dispersing media, and magnetic particles. It swells well at low pH (<6.0) and at low temperature, but shrinks above pH 6.0, or even more shrinks with salt addition at neutral and basic conditions. In addition, the hydrodynamic diameter of PMEMA microgel was decreased gradually at basic and neutral pH when solution temperature was increased up to the lower critical solution temperature of PMEMA (LCST, 35°C), but microgel diameter did not change much above LCST. Multi‐responsive behavior of PMEMA microgel was investigated by using dynamic light scattering, UV‐Vis spectrophotometer and zeta potentiometer. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42072.
A zwitterionic sulfobetaine-based diblock copolymer was successfully synthesized and used in the preparation and stabilization of Ag nanoparticles (AgNPs). For the related block copolymer, a precursor AB type diblock copolymer was synthesized via atom transfer radical polymerization by using a MPEG-based ATRP macroinitiator and 2-(N-dimethylamino)ethyl methacrylate (DMA) comonomer. Tertiary amine residues of PDMA blocks in poly(ethylene glycol) methyl ether-b-poly[2-(N-diethylamino)ethyl methacrylate] (MPEG-b-PDMA) precursor was then converted to polybetaine structures by reacting with 1,3-propanesultone to obtain poly(ethylene glycol) methyl ether-b-poly[3-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate] (MPEG-b-PβDMA) derivative. The resulting block copolymer was successfully used as stabilizer in the chemical and sonochemical synthesis of spherical AgNPs with a diameter in the range of 7.9-9.3 nm. The average diameter of AgNPs synthesized by sonochemical method was smaller than those synthesized by chemical method. The MPEG-b-PβDMA diblock copolymer was determined to be a good stabilizer for AgNPs. The AgNPs dispersion was stable for more than 5 months without any flocculation at room temperature. The catalytic activity of polymer-AgNP dispersion was also investigated in the reduction of p-nitrophenol to p-aminophenol and was found to be quite effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.