In this paper, we consider the numerical solution of a time-fractional heat equation, which is obtained from the standard diffusion equation by replacing the first-order time derivative with the Caputo derivative of order α, where 0 < α < 1. The main purpose of this work is to extend the idea on the Crank-Nicholson method to the time-fractional heat equations. By the method of the Fourier analysis, we prove that the proposed method is stable and the numerical solution converges to the exact one with the order O(τ 2−α + h 2 ), conditionally. Numerical experiments are carried out to support the theoretical claims.MSC 2010 : 65M12, 65M06
We consider the numerical solution of a time-fractional heat equation, which is obtained from the standard diffusion equation by replacing the first-order time derivative with Riemann-Liouville fractional derivative of order α, where 0 < α < 1. The main purpose of this work is to extend the idea on Crank-Nicholson method to the time-fractional heat equations. We prove that the proposed method is unconditionally stable, and the numerical solution converges to the exact one with the order O τ 2 h 2 . Numerical experiments are carried out to support the theoretical claims.
A high-order finite difference scheme is proposed for solving time fractional heat equations. The time fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme a new second-order discretization, which is based on Crank-Nicholson method, is applied for the time fractional part and fourth-order accuracy compact approximation is applied for the second-order space derivative. The spectral stability and the Fourier stability analysis of the difference scheme are shown. Finally a detailed numerical analysis, including tables, figures, and error comparison, is given to demonstrate the theoretical results and high accuracy of the proposed scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.