Proteasome inhibitors are useful for biochemical research and clinical treatment. In our previous study, we reported that the 4N-coordinated platinum complexes with anthracenyl ring and heterocycle exhibited proteasome-inhibitory activity. In the present study, the structure–activity relationships and characterization of these complexes were determined for the elucidation of the role of aromatic ligands. Lineweaver–Burk analysis revealed that the chemical structure of heterocycles affects the binding mode of platinum complexes. Platinum complexes with anthracenyl ring and pyridine showed competitive inhibition, although platinum complexes with anthracenyl ring and phenanthroline showed non-competitive inhibition. The structure–activity relationships demonstrated that anthracenyl moiety plays a crucial role in proteasome-inhibitory activity. The platinum complexes with naphthyl or phenyl rings exhibited lower inhibitory activities than the platinum complex with anthracenyl ring. The reactivity with N-acetylcysteine varied according to the chemical structure of complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.