Vector transmission is a critical stage in the viral life cycle, yet for most plant viruses how they interact with their vector is unknown or is explained by analogy with previously described relatives. Here we examined the mechanism underlying the transmission of citrus tristeza virus (CTV) by its aphid vector, Toxoptera citricida, with the objective of identifying what virus-encoded proteins it uses to interact with the vector. Using fluorescently labeled virions, we demonstrated that CTV binds specifically to the lining of the cibarium of the aphid. Through in vitro competitive binding assays between fluorescent virions and free viral proteins, we determined that the minor coat protein is involved in vector interaction. We also found that the presence of two heat shock-like proteins, p61 and p65, reduces virion binding in vitro. Additionally, treating the dissected mouthparts with proteases did not affect the binding of CTV virions. In contrast, chitinase treatment reduced CTV binding to the foregut. Finally, competition with glucose, N-acetyl--D-glucosamine, chitobiose, and chitotriose reduced the binding. These findings together suggest that CTV binds to the sugar moieties of the cuticular surface of the aphid cibarium, and the binding involves the concerted activity of three virus-encoded proteins. IMPORTANCELimited information is known about the specific interactions between citrus tristeza virus and its aphid vectors. These interactions are important for the process of successful transmission. In this study, we localized the CTV retention site as the cibarium of the aphid foregut. Moreover, we demonstrated that the nature of these interactions is protein-carbohydrate binding. The viral proteins, including the minor coat protein and two heat shock proteins, bind to sugar moieties on the surface of the foregut. These findings will help in understanding the transmission mechanism of CTV by the aphid vector and may help in developing control strategies which interfere with the CTV binding to its insect vector to block the transmission.T he survival of a virus is dependent on its ability to move from host to host, which for many plant viruses requires an insect vector (1). The mechanisms by which viruses are transmitted by these insects have been classified into two general groups: circulative and noncirculative. More than half of the viruses with a described mode of transmission fall into the latter category and are defined by attachment to sites within the vector's stylet, cibarium, or foregut (2, 3). There are also differences in both the acquisition and retention of noncirculative viruses (4), previously described as nonpersistent versus semipersistent. While there is no clear demarcation between the two, nonpersistent viruses can be acquired and disseminated through probing and salivation within a matter of minutes, while most semipersistent viruses may only be acquired and subsequently transmitted through deep phloem feeding, which generally requires hours for acquisition, and vectors remain vi...
The Asian citrus psyllid Diaphorina citri Kuwayama is currently threatening the citrus industry by transmitting the causative agent Candidatus Liberibacter asiaticus (CLas) of huanglongbing. Multiplication of CLas in haemolymph of D. citri indicates that it contains the necessary nutrients for CLas. Although many studies examine D. citri, the haemolymph composition of this dangerous pest remains to be investigated. In the present study, the haemolymph of D. citri is collected using a nanolitre syringe after the removal of one of its forelegs. The haemolymph is either derivatized with methyl chloroformate (MCF) or trimethylsilyl (TMS) derivatizing reagent and analyzed with gas chromatography–mass spectrometry. Nineteen amino acids, two organic acids and seven fatty acids are detected in the haemolymph after MCF derivatization. More metabolites are detected after TMS derivatization. Sugars are the most abundant metabolites in the haemolymph. Glucose and fructose are the main monosaccharides. Trehalose and sucrose are the major disaccharides. Furthermore, three inositol isomers (myo‐inositol, scyllo‐inositol and chiro‐inositol) are detected in the haemolymph. Organic acids are found in low amounts, whereas phosphoric acid is found at a higher concentration. Twenty‐four nucleotides and sugar nucleotides, including ATP, ADP and AMP, are detected using high‐performance anion‐exchange chromatography. Adenine nucleotides are the most abundant nucleotides followed by uridine and guanosine. The adenylate energy charge for the haemolymph is 0.77. Our results show that many metabolites found in the citrus phloem sap are also found in the haemolymph of D. citri.
In general, Armadillidium vulgare (Latreille) are considered nonpests of soybean [Glycine max (L.) Merrill], but changes in soil conservation practices have shifted the pest status of this organism from an opportunistic to a perennial, early-season pest in parts of central Kansas. As a result, soybean producers that rotate with corn (Zea mays L.) under conservation tillage practices have resorted to removing excess corn residue by using controlled burns. In a 2-yr field study (2009-2010), we demonstrated that residue removal in burned compared with unburned plots (measured as previous crop residue weights) had minimal impact on numbers of live and dead A. vulgare, soybean seedling emergence, and isopod feeding damage over time. Specifically, removal of residue by burning did not result in higher emergence rates for soybean stands or less feeding damage by A. vulgare. In a separate study, we found that number of live A. vulgare and residue weights had no consistent relationship with seedling emergence or feeding damage. Furthermore, seedling emergence was not impacted by higher numbers ofA. vulgare in unburned plots, indicating that emergence in this study may have been influenced by factors other than A. vulgare densities. These studies demonstrate that removing residue through controlled burning did not impact seedling emergence in presence of A. vulgare and that residue and feeding damage to seedlings did not consistently relate to A. vulgare densities. Other factors that may have influenced a relationship between residue and live isopod numbers, such as variable moisture levels, are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.