Ultrahigh-frequency surface acoustic wave devices were fabricated on a ZnO/SiO₂/Si substrate using step-and-flash nanoimprint lithography combined with hydrogen silsesquioxane (HSQ) planarization. Excellent critical dimension control was demonstrated for interdigital transducers with finger electrode widths from 125 down to 65 nm. Fundamental and higher-order Rayleigh modes up to 16.1 GHz were excited and detected, which is the highest frequency for ZnO-based transducers on silicon reported so far. Surface acoustic modes were confirmed with numerical simulations. Simulation results showed good agreement with the experimental data.
The oscillating piezoelectric fields accompanying surface acoustic waves are able to transport charge carriers in semiconductor heterostructures. Here, we demonstrate high-frequency (above 1 GHz) acoustic charge transport in GaAs-based nanowires deposited on a piezoelectric substrate. The short wavelength of the acoustic modulation, smaller than the length of the nanowire, allows the trapping of photo-generated electrons and holes at the spatially separated energy minima and maxima of conduction and valence bands, respectively, and their transport along the nanowire with a well defined acoustic velocity towards indium-doped recombination centers.
We demonstrate piezo-electrical generation of ultrahigh-frequency surface acoustic waves on silicon substrates, using high-resolution UV-based nanoimprint lithography, hydrogen silsequioxane planarization, and metal lift-off. Interdigital transducers were fabricated on a ZnO layer sandwiched between two SiO2 layers on top of a Si substrate. Excited modes up to 23.5 GHz were observed. Depth profile calculations of the piezoelectric field show this multilayer structure to be suitable for acoustic charge transport in silicon at extremely high frequencies with moderate carrier mobility requirements.
In this paper, we fabricated p-Co3O4/n-TiO2 heterostructures and investigated their gas sensing properties. The structural and morphological characterization were performed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy analysis (XPS). The electrical properties of the heterostructure were studied within the temperature range from 293 K to 423 K. Changes in electrical properties and sensing behavior against reducing and oxidizing gases were attributed to the formation of p–n heterojunctions at the Co3O4 and TiO2 interface. In comparison with sensing performed with pristine TiO2 nanotubes (NTs), a significant improvement in H2 sensing at 200 °C was observed, while the sensing response against NO2 decreased for the heterostructures. Additionally, a response against toluene gas, in contrast to pristine TiO2 NTs, appeared in the Co3O4/TiO2 heterostructure samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.