The objectives of this study were to compare the fracture strength of endocrown restorations fabricated with different preparation depth and various CAD/CAM ceramics, and to assess the fracture types. Endodontically treated 100 extracted human permanent maxillary centrals were divided into two preparation depth groups as short (S: 3-mm-deep) and long (L: 6-mm-deep), then five ceramic subgroups, namely: feldspathic-ceramic (Vita Mark II-VM2), lithium-disilicate glass-ceramic (IPS e.max CAD-E.max), resin-ceramic (LAVA Ultimate-LU), polymer infiltrated ceramic (Vita Enamic-VE) and monoblock zirconia (inCoris TZI-TZI) (n=10/subgroup). The endocrowns were fabricated by CAD/CAM and were cemented with resin cement (RelyX U200). The teeth were thermally cycled (5,000cycles) and fracture tests were performed at 45º angle to the teeth. The data were statistically analyzed (Kruskal-Wallis, Mann Whitney U), failure modes were evaluated with stereomicroscopy. Zirconia group provided the statistically highest fracture strength, but also exhibited non-repairable failures. Preparation depth has an effect on the fracture strength only for feldspathic ceramic.
Fracture resistance of inlays and onlays may be influenced by the quantity of the dental structure removed and the restorative materials used. The purpose of this in vitro study was to evaluate the effects of two different cavity preparation designs and all-ceramic restorative materials on the fracture resistance of the tooth-restoration complex. Fifty mandibular third molar teeth were randomly divided into the following five groups: group 1: intact teeth (control); group 2: inlay preparations, lithium-disilicate glass-ceramic (IPS e.max Press, Ivoclar Vivadent AG, Schaan, Liechtenstein); group 3: inlay preparations, zirconia ceramic (ICE Zirkon, Zirkonzahn SRL, Gais, Italy); group 4: onlay preparations, lithium-disilicate glass-ceramic (IPS e.max Press); and group 5: onlay preparations, zirconia ceramic (ICE Zirkon). The inlay and onlay restorations were adhesively cemented with dual polymerizing resin cement (Variolink II, Ivoclar Vivadent AG). After thermal cycling (5° to 55°C × 5000 cycles), specimens were subjected to a compressive load until fracture at a crosshead speed of 0.5 mm/min. Statistical analyses were performed using one-way analysis of variance and Tukey HSD tests. The fracture strength values were significantly higher in the inlay group (2646.7 ± 360.4) restored with lithium-disilicate glass-ceramic than those of the onlay group (1673.6 ± 677) restored with lithium-disilicate glass-ceramic. The fracture strength values of teeth restored with inlays using zirconia ceramic (2849 ± 328) and onlays with zirconia ceramic (2796.3 ± 337.3) were similar to those of the intact teeth (2905.3 ± 398.8). In the IPS e.max Press groups, as the preparation amount was increased (from inlay to onlay preparation), the fracture resistance was decreased. In the ICE Zirkon ceramic groups, the preparation type did not affect the fracture resistance results.
Compared to the removal kit, removal of the fiber posts with an ultrasonic tip decreases the fracture resistance of the roots, although significantly more time is required.
Radiopacity is an important property of composite materials for clinical diagnosis. For seven direct composites (Aelite LS Posterior, Aelite All-Purpose Body, Quadrant Universal LC, Clearfil Majesty Posterior, Clearfil Majesty Esthetic, Filtek Ultimate Dentin, IPS Empress Direct Dentin) and six indirect composites (Ceromega, Epricord, Estenia C&B, Tescera, Signum Ceramis, Solidex), diskshaped specimens (N=260, n=10 per group) were fabricated for two thicknesses at 1 and 2 mm. Average radiographic density of each composite material was calculated. Radiopacity values of specimens were expressed in equivalent thickness of aluminum using the calibration curve. Data were analyzed using one-way and two-way ANOVA, followed by Tukey's HSD test (α=0.05). Radiopacity was significantly affected by resin composite type (p<0.05) and thickness (p<0.001). All composites, except Epricord (1.22-1.84), had higher radiopacity values than dentin (1.23-2.24). IPS Empress Direct (5.58-9.38) and Estenia C&B (5.49-9.16) showed significantly higher radiopacity (p<0.05) than the other materials including enamel and dentin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.