iii I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. The final goal of structured information extraction is to populate a database and reach data effectively. Our study focuses on named entity recognition (NER) which is an important subtask of IE. NER is the task that deals with extraction of named entities like person, location, organization names, temporal expressions (date and time) and numerical expressions (money and percent). NER research on Turkish is known to be rare. There are rule-based, learning based and hybrid systems for NER on Turkish texts. Some of the learning approaches used for NER in Turkish are conditional random fields (CRF), rote learning, rule extraction and generalization.In this thesis, we propose a learning based named entity recognizer for Turkish texts which employs a modified version of Bayesian learning as the learning scheme. To the best of our knowledge, this is the first learning based system that uses Bayesian
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.