To elucidate the putative neuroprotective effects of ghrelin in subarachnoid hemorrhage (SAH)-induced brain injury, Wistar albino rats (n = 54) were divided into sham-operated control, saline-treated SAH, and ghrelin-treated (10 microg/kg/d IP) SAH groups. The rats were injected with blood (0.3 mL) into the cisterna magna to induce SAH, and were sacrificed 48 h after the neurological examination scores were recorded. In plasma samples, neuron-specific enolase (NSE), S-100beta protein, TNF-alpha, and IL-1beta levels were evaluated, while forebrain tissue samples were taken for the measurement of malondialdehyde (MDA), glutathione (GSH), reactive oxygen species levels, myeloperoxidase (MPO), Na(+)-K(+)-ATPase activity, and DNA fragmentation ratio. Brain tissue samples containing the basilar arteries were obtained for histological examination, while cerebrum and cerebellum were removed for the measurement of blood-brain barrier (BBB) permeability and brain water content. The neurological scores were impaired at 48 h after SAH induction, and SAH caused significant decreases in brain GSH content and Na(+)-K(+)-ATPase activity, and increases in chemiluminescence, MDA levels, and MPO activity. Compared with the control group, the protein levels of NSE, S-100beta, TNF-alpha, and IL-1beta in plasma were also increased, while ghrelin treatment prevented all SAH-induced alterations observed both biochemically and histopathologically. The results demonstrate that ghrelin alleviates SAH-induced oxidative brain damage, and exerts neuroprotection by maintaining a balance in oxidant-antioxidant status, by inhibiting proinflammatory mediators, and preventing the depletion of endogenous antioxidants evoked by SAH.