Osteocytes can remove and remodel small amounts of their surrounding bone matrix through osteocytic osteolysis, which results in increased volume occupied by lacunar and canalicular space (LCS). It is well established that cortical bone stiffness and strength are strongly and inversely correlated with vascular porosity, but whether changes in LCS volume caused by osteocytic osteolysis are large enough to affect bone mechanical properties is not known. In the current studies we tested the hypotheses that (1) lactation and postlactation recovery in mice alter the elastic modulus of bone tissue, and (2) such local changes in mechanical properties are related predominantly to alterations in lacunar and canalicular volume rather than bone matrix composition. Mechanical testing was performed using microindentation to measure modulus in regions containing solely osteocytes and no vascular porosity. Lactation caused a significant (~13%) reduction in bone tissue-level elastic modulus (p < 0.001). After 1 week postweaning (recovery), bone modulus levels returned to control levels and did not change further after 4 weeks of recovery. LCS porosity tracked inversely with changes in cortical bone modulus. Lacunar and canalicular void space increased 7% and 15% with lactation, respectively (p < 0.05), then returned to control levels at 1 week after weaning. Neither bone mineralization (assessed by high-resolution backscattered scanning electron microscopy) nor mineral/matrix ratio or crystallinity (assessed by Raman microspectroscopy) changed with lactation. Thus, changes in bone mechanical properties induced by lactation and recovery appear to depend predominantly on changes in osteocyte LCS dimensions. Moreover, this study demonstrates that tissue-level cortical bone mechanical properties are rapidly and reversibly modulated by osteocytes in response to physiological challenge. These data point to a hitherto unappreciated role for osteocytes in modulating and maintaining local bone mechanical properties.
Osteoarthritis (OA), long considered a primary disorder of articular cartilage, is commonly associated with subchondral bone sclerosis. However, the cellular mechanisms responsible for changes to subchondral bone in OA, and the extent to which these changes are drivers of or a secondary reaction to cartilage degeneration, remain unclear. In knee joints from human patients with end-stage OA, we found evidence of profound defects in osteocyte function. Suppression of osteocyte perilacunar/canalicular remodeling (PLR) was most severe in the medial compartment of OA subchondral bone, with lower protease expression, diminished canalicular networks, and disorganized and hypermineralized extracellular matrix. As a step toward evaluating the causality of PLR suppression in OA, we ablated the PLR enzyme MMP13 in osteocytes while leaving chondrocytic MMP13 intact, using Cre recombinase driven by the 9.6-kb DMP1 promoter. Not only did osteocytic MMP13 deficiency suppress PLR in cortical and subchondral bone, but it also compromised cartilage. Even in the absence of injury, osteocytic MMP13 deficiency was sufficient to reduce cartilage proteoglycan content, change chondrocyte production of collagen II, aggrecan, and MMP13, and increase the incidence of cartilage lesions, consistent with early OA. Thus, in humans and mice, defects in PLR coincide with cartilage defects. Osteocyte-derived MMP13 emerges as a critical regulator of cartilage homeostasis, likely via its effects on PLR. Together, these findings implicate osteocytes in bone-cartilage crosstalk in the joint and suggest a causal role for suppressed perilacunar/canalicular remodeling in osteoarthritis.
Identifying new genetic determinants of bone mineral density (BMD) and fracture promises to yield improved diagnostics and therapies for bone fragility. However, prioritizing candidate genes from genome‐wide screens can be challenging. To overcome this challenge, we prioritized mouse genes that are differentially expressed in aging mouse bone based on whether their human homolog is associated with human BMD and/or fracture. Unbiased RNA‐seq analysis of young and old male C57BL/6 mouse cortical bone identified 1499, 1685, and 5525 differentially expressed genes (DEGs) in 1, 2, and 2.5‐year‐old bone, relative to 2‐month‐old bone, respectively. Gene‐based scores for heel ultrasound bone mineral density (eBMD) and fracture were estimated using published genome‐wide association studies (GWAS) results of these traits in the UK Biobank. Enrichment analysis showed that mouse bone DEG sets for all three age groups, relative to young bone, are significantly enriched for eBMD, but only the oldest two DEG sets are enriched for fracture. Using gene‐based scores, this approach prioritizes among thousands of DEGs by a factor of 5‐ to 100‐fold, yielding 10 and 21 genes significantly associated with fracture in the two oldest groups of mouse DEGs. Though these genes were not the most differentially expressed, they included Sost, Lrp5, and others with well‐established functions in bone. Several others have, as yet, unknown roles in the skeleton. Therefore, this study accelerates identification of new genetic determinants of bone fragility by prioritizing a clinically relevant and experimentally tractable number of candidate genes for functional analysis. Finally, we provide a website (http://www.mouse2human.org) to enable other researchers to easily apply our strategy. © 2022 American Society for Bone and Mineral Research (ASBMR).
Bone is a dynamic tissue that constantly adapts to changing mechanical demands. The transforming growth factor beta (TGFβ) signaling pathway plays several important roles in maintaining skeletal homeostasis by both coupling the bone‐forming and bone‐resorbing activities of osteoblasts and osteoclasts and by playing a causal role in the anabolic response of bone to applied loads. However, the extent to which the TGFβ signaling pathway in osteocytes is directly regulated by fluid shear stress (FSS) is unknown, despite work suggesting that fluid flow along canaliculi is a dominant physical cue sensed by osteocytes following bone compression. To investigate the effects of FSS on TGFβ signaling in osteocytes, we stimulated osteocytic OCY454 cells cultured within a microfluidic platform with FSS. We find that FSS rapidly upregulates Smad2/3 phosphorylation and TGFβ target gene expression, even in the absence of added TGFβ. Indeed, relative to treatment with TGFβ, FSS induced a larger increase in levels of pSmad2/3 and Serpine1 that persisted even in the presence of a TGFβ receptor type I inhibitor. Our results show that FSS stimulation rapidly induces phosphorylation of multiple TGFβ family R‐Smads by stimulating multimerization and concurrently activating several TGFβ and BMP type I receptors, in a manner that requires the activity of the corresponding ligand. While the individual roles of the TGFβ and BMP signaling pathways in bone mechanotransduction remain unclear, these results implicate that FSS activates both pathways to generate a downstream response that differs from that achieved by either ligand alone.
This is an open access article under the terms of the Creat ive Commo ns Attri butio n-NonCo mmerc ial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.