Specimen data in taxonomic literature are among the highest quality primary biodiversity data. Innovative cybertaxonomic journals are using workflows that maintain data structure and disseminate electronic content to aggregators and other users; such structure is lost in traditional taxonomic publishing. Legacy taxonomic literature is a vast repository of knowledge about biodiversity. Currently, access to that resource is cumbersome, especially for non-specialist data consumers. Markup is a mechanism that makes this content more accessible, and is especially suited to machine analysis. Fine-grained XML (Extensible Markup Language) markup was applied to all (37) open-access articles published in the journal Zootaxa containing treatments on spiders (Order: Araneae). The markup approach was optimized to extract primary specimen data from legacy publications. These data were combined with data from articles containing treatments on spiders published in Biodiversity Data Journal where XML structure is part of the routine publication process. A series of charts was developed to visualize the content of specimen data in XML-tagged taxonomic treatments, either singly or in aggregate. The data can be filtered by several fields (including journal, taxon, institutional collection, collecting country, collector, author, article and treatment) to query particular aspects of the data. We demonstrate here that XML markup using GoldenGATE can address the challenge presented by unstructured legacy data, can extract structured primary biodiversity data which can be aggregated with and jointly queried with data from other Darwin Core-compatible sources, and show how visualization of these data can communicate key information contained in biodiversity literature. We complement recent studies on aspects of biodiversity knowledge using XML structured data to explore 1) the time lag between species discovry and description, and 2) the prevelence of rarity in species descriptions.
Background: Recent years have seen a surge in projects that produce large volumes of structured, machine-readable biodiversity data. To make these data amenable to processing by generic, open source “data enrichment” workflows, they are increasingly being represented in a variety of standards-compliant interchange formats. Here, we report on an initiative in which software developers and taxonomists came together to address the challenges and highlight the opportunities in the enrichment of such biodiversity data by engaging in intensive, collaborative software development: The Biodiversity Data Enrichment Hackathon.Results: The hackathon brought together 37 participants (including developers and taxonomists, i.e. scientific professionals that gather, identify, name and classify species) from 10 countries: Belgium, Bulgaria, Canada, Finland, Germany, Italy, the Netherlands, New Zealand, the UK, and the US. The participants brought expertise in processing structured data, text mining, development of ontologies, digital identification keys, geographic information systems, niche modeling, natural language processing, provenance annotation, semantic integration, taxonomic name resolution, web service interfaces, workflow tools and visualisation. Most use cases and exemplar data were provided by taxonomists.One goal of the meeting was to facilitate re-use and enhancement of biodiversity knowledge by a broad range of stakeholders, such as taxonomists, systematists, ecologists, niche modelers, informaticians and ontologists. The suggested use cases resulted in nine breakout groups addressing three main themes: i) mobilising heritage biodiversity knowledge; ii) formalising and linking concepts; and iii) addressing interoperability between service platforms. Another goal was to further foster a community of experts in biodiversity informatics and to build human links between research projects and institutions, in response to recent calls to further such integration in this research domain.Conclusions: Beyond deriving prototype solutions for each use case, areas of inadequacy were discussed and are being pursued further. It was striking how many possible applications for biodiversity data there were and how quickly solutions could be put together when the normal constraints to collaboration were broken down for a week. Conversely, mobilising biodiversity knowledge from their silos in heritage literature and natural history collections will continue to require formalisation of the concepts (and the links between them) that define the research domain, as well as increased interoperability between the software platforms that operate on these concepts.
Taxonomic expertise for the identification of species is rare and costly. On-going advances in computer vision and machine learning have led to the development of numerous semi-and fully automated species identification systems. However, these systems are rarely agnostic to specific morphology, rarely can perform taxonomic "approximation" (by which we mean partial identification at least to higher taxonomic level if not to species), and frequently rely on costly scientific imaging technologies. We present a generic, hierarchical identification system for automated taxonomic approximation of organisms from images. We assessed the effectiveness of this system using photographs of slipper orchids (Cypripedioideae), for which we implemented image pre-processing, segmentation, and colour and shape feature extraction algorithms to obtain digital phenotypes for 116 species. The identification system trained on these digital phenotypes uses a nested hierarchy of artificial neural networks for pattern recognition and automated classification that mirrors the Linnean taxonomy, such that user-submitted photos can be assigned a genus, section, and species classification by traversing this hierarchy. Performance of the identification system varied depending on photo quality, number of species included for training, and desired taxonomic level for identification. High quality photos were scarce for some taxa and were under-represented in the training set, resulting in imbalanced network training. The image features used for training were sufficient to reliably identify photos to the correct genus but less so to the correct section and species. The outcomes of this project include a library of feature extraction algorithms called ImgPheno, a collection of scripts for neural network training called
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.