We present the cosmological implications from final measurements of clustering using galaxies, quasars, and Lyα forests from the completed Sloan Digital Sky Survey (SDSS) lineage of experiments in large-scale structure. These experiments, composed of data from SDSS, SDSS-II, BOSS, and eBOSS, offer independent measurements of baryon acoustic oscillation (BAO) measurements of angular-diameter distances and Hubble distances relative to the sound horizon, r d , from eight different samples and six measurements of the growth rate parameter, f σ 8 , from redshift-space distortions (RSD). This composite sample is the most constraining of its kind and allows us to perform a comprehensive assessment of the cosmological model after two decades of dedicated spectroscopic observation. We show that the BAO data alone are able to rule out dark-energy-free models at more than eight standard deviations in an extension to the flat, ΛCDM model that allows for curvature. When combined with Planck Cosmic Microwave Background (CMB) measurements of temperature and polarization, under the same model, the BAO data provide nearly an order of magnitude improvement on curvature constraints relative to primary CMB constraints alone. Independent of distance measurements, the SDSS RSD data complement weak lensing measurements from the Dark Energy Survey (DES) in demonstrating a preference for a flat ΛCDM cosmological model when combined with Planck measurements. The RSD and lensing measurements indicate a growth rate that is consistent with predictions from Planck temperature and polarization data and with General Relativity. When combining the results of SDSS BAO and RSD, Planck, Pantheon Type Ia supernovae (SNe Ia), and DES weak lensing and clustering measurements, all multiple-parameter extensions remain consistent with a ΛCDM model. Regardless of cosmological model, the precision on each of the three ΛCDM parameters, Ω Λ , H 0 , and σ 8 , remains at roughly 1%, showing changes of less than 0.6% in the central values between models. In a model that allows for free curvature and a time-evolving equation of state for dark energy, the combined samples produce a constraint Ω k = −0.0023 ± 0.0022. The dark energy constraints lead to w 0 = −0.912 ± 0.081 and w a = −0.48 +0.36 −0.30 , corresponding to an equation of state of w p = −1.020 ± 0.032 at a pivot redshift z p = 0.29 and a Dark Energy Figure of Merit of 92. The inverse distance ladder measurement under this model yields H 0 = 68.20 ± 0.81 km s −1 Mpc −1 , remaining in tension with several direct determination methods; the BAO data allow Hubble constant estimates that are robust against the assumption of the cosmological model. In addition, the BAO data allow estimates of H 0 that are independent of the CMB data, with similar central values and precision under a ΛCDM model. Our most constraining combination of data gives the upper limit on the sum of neutrino masses at m ν < 0.111 eV (95% confidence). Finally, we consider the improvements in cosmology constraints over the last decade by...
This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library “MaStar”). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17).
We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg 2 of griz imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric-redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while "blind" to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat ΛCDM and wCDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for ΛCDM) or 7 (for wCDM) cosmological parameters including the neutrino mass density and including the 457 × 457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions and from their combination obtain S 8 ≡ σ 8 ðΩ m =0.3Þ 0.5 ¼ 0.773 þ0.026 −0.020 and Ω m ¼ 0.267 þ0.030 −0.017 for ΛCDM; for wCDM, we find S 8 ¼ 0.782 þ0.036 −0.024 , Ω m ¼ 0.284 þ0.033 −0.030 , and w ¼ −0.82 þ0.21 −0.20 at 68% C.L. The precision of these DES Y1 constraints rivals that from the Planck cosmic microwave background measurements, allowing a comparison of structure in the very early and late Universe on equal terms. Although the DES Y1 best-fit values for S 8 and Ω m are lower than the central values from Planck for both ΛCDM and wCDM, the Bayes factor indicates that the DES Y1 and Planck data sets are consistent with each other in the context of ΛCDM. Combining DES Y1 with Planck, baryonic acoustic oscillation measurements from SDSS, 6dF, and BOSS and type Ia supernovae from the Joint Lightcurve Analysis data set, we derive very tight constraints on cosmological parameters: S 8 ¼ 0.802 AE 0.012 and Ω m ¼ 0.298 AE 0.007 in ΛCDM and w ¼ −1.00 þ0.05 −0.04 in wCDM. Upcoming Dark Energy Survey analyses will provide more stringent tests of the ΛCDM model and extensions such as a time-varying equation of state of dark energy or modified gravity.
We present constraints on cosmological parameters from the Pantheon+ analysis of 1701 light curves of 1550 distinct Type Ia supernovae (SNe Ia) ranging in redshift from z = 0.001 to 2.26. This work features an increased sample size from the addition of multiple cross-calibrated photometric systems of SNe covering an increased redshift span, and improved treatments of systematic uncertainties in comparison to the original Pantheon analysis, which together result in a factor of 2 improvement in cosmological constraining power. For a flat ΛCDM model, we find Ω M = 0.334 ± 0.018 from SNe Ia alone. For a flat w 0CDM model, we measure w 0 = −0.90 ± 0.14 from SNe Ia alone, H 0 = 73.5 ± 1.1 km s−1 Mpc−1 when including the Cepheid host distances and covariance (SH0ES), and w 0 = − 0.978 − 0.031 + 0.024 when combining the SN likelihood with Planck constraints from the cosmic microwave background (CMB) and baryon acoustic oscillations (BAO); both w 0 values are consistent with a cosmological constant. We also present the most precise measurements to date on the evolution of dark energy in a flat w 0 w a CDM universe, and measure w a = − 0.1 − 2.0 + 0.9 from Pantheon+ SNe Ia alone, H 0 = 73.3 ± 1.1 km s−1 Mpc−1 when including SH0ES Cepheid distances, and w a = − 0.65 − 0.32 + 0.28 when combining Pantheon+ SNe Ia with CMB and BAO data. Finally, we find that systematic uncertainties in the use of SNe Ia along the distance ladder comprise less than one-third of the total uncertainty in the measurement of H 0 and cannot explain the present “Hubble tension” between local measurements and early universe predictions from the cosmological model.
Despite its continued observational successes, there is a persistent (and growing) interest in extending cosmology beyond the standard model, ΛCDM. This is motivated by a range of apparently serious theoretical issues, involving such questions as the cosmological constant problem, the particle nature of dark matter, the validity of general relativity on large scales, the existence of anomalies in the CMB and on small scales, and the predictivity and testability of the inflationary paradigm. In this paper, we summarize the current status of ΛCDM as a physical theory, and review investigations into possible alternatives along a number of different lines, with a particular focus on highlighting the most promising directions. While the fundamental problems are proving reluctant to yield, the study of alternative cosmologies has led to considerable progress, with much more to come if hopes about forthcoming high-precision observations and new theoretical ideas are fulfilled.Keywords: cosmology -dark energy -cosmological constant problem -modified gravitydark matter -early universe Cosmology has been both blessed and cursed by the establishment of a standard model: ΛCDM. On the one hand, the model has turned out to be extremely predictive, explanatory, and observationally robust, providing us with a substantial understanding of the formation of large-scale structure, the state of the early Universe, and the cosmic abundance of different types of matter and energy. It has also survived an impressive battery of precision observational tests -anomalies are few and far between, and their significance is contentious where they do arise -and its predictions are continually being vindicated through the discovery of new effects (B-mode polarization [1] and lensing [2,3] of the cosmic microwave background (CMB), and the kinetic Sunyaev-Zel'dovich effect [4] being some recent examples). These are the hallmarks of a good and valuable physical theory.On the other hand, the model suffers from profound theoretical difficulties. The two largest contributions to the energy content at late times -cold dark matter (CDM) and the cosmological constant (Λ) -have entirely mysterious physical origins. CDM has so far evaded direct detection by laboratory experiments, and so the particle field responsible for it -presumably a manifestation of "beyond the standard model" particle physics -is unknown. Curious discrepancies also appear to exist between the predicted clustering properties of CDM on small scales and observations. The cosmological constant is even more puzzling, giving rise to quite simply the biggest problem in all of fundamental physics: the question of why Λ appears to take such an unnatural value [5,6,7]. Inflation, the theory of the very early Universe, has also been criticized for being fine-tuned and under-predictive [8], and appears to leave many problems either unsolved or fundamentally unresolvable. These problems are indicative of a crisis.From January 14th-17th 2015, we held a conference in Oslo, Norway to surve...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.