Simulations play a vital role in testing and validating H i 21-cm power spectrum estimation techniques. Conventional methods use techniques like N-body simulations to simulate the sky signal which is then passed through a model of the instrument. This makes it necessary to simulate the H i distribution in a large cosmological volume, and incorporate both the light-cone effect and the telescope's chromatic response. The computational requirements may be particularly large if one wishes to simulate many realizations of the signal. In this paper we present an analytical method to simulate the H i visibility signal. This is particularly efficient if one wishes to simulate a large number of realizations of the signal. Our method is based on theoretical predictions of the visibility correlation which incorporate both the light-cone effect and the telescope's chromatic response. We have demonstrated this method by applying it to simulate the H i visibility signal for the upcoming Ooty Wide Field Array Phase I.
Despite its continued observational successes, there is a persistent (and growing) interest in extending cosmology beyond the standard model, ΛCDM. This is motivated by a range of apparently serious theoretical issues, involving such questions as the cosmological constant problem, the particle nature of dark matter, the validity of general relativity on large scales, the existence of anomalies in the CMB and on small scales, and the predictivity and testability of the inflationary paradigm. In this paper, we summarize the current status of ΛCDM as a physical theory, and review investigations into possible alternatives along a number of different lines, with a particular focus on highlighting the most promising directions. While the fundamental problems are proving reluctant to yield, the study of alternative cosmologies has led to considerable progress, with much more to come if hopes about forthcoming high-precision observations and new theoretical ideas are fulfilled.Keywords: cosmology -dark energy -cosmological constant problem -modified gravitydark matter -early universe Cosmology has been both blessed and cursed by the establishment of a standard model: ΛCDM. On the one hand, the model has turned out to be extremely predictive, explanatory, and observationally robust, providing us with a substantial understanding of the formation of large-scale structure, the state of the early Universe, and the cosmic abundance of different types of matter and energy. It has also survived an impressive battery of precision observational tests -anomalies are few and far between, and their significance is contentious where they do arise -and its predictions are continually being vindicated through the discovery of new effects (B-mode polarization [1] and lensing [2,3] of the cosmic microwave background (CMB), and the kinetic Sunyaev-Zel'dovich effect [4] being some recent examples). These are the hallmarks of a good and valuable physical theory.On the other hand, the model suffers from profound theoretical difficulties. The two largest contributions to the energy content at late times -cold dark matter (CDM) and the cosmological constant (Λ) -have entirely mysterious physical origins. CDM has so far evaded direct detection by laboratory experiments, and so the particle field responsible for it -presumably a manifestation of "beyond the standard model" particle physics -is unknown. Curious discrepancies also appear to exist between the predicted clustering properties of CDM on small scales and observations. The cosmological constant is even more puzzling, giving rise to quite simply the biggest problem in all of fundamental physics: the question of why Λ appears to take such an unnatural value [5,6,7]. Inflation, the theory of the very early Universe, has also been criticized for being fine-tuned and under-predictive [8], and appears to leave many problems either unsolved or fundamentally unresolvable. These problems are indicative of a crisis.From January 14th-17th 2015, we held a conference in Oslo, Norway to surve...
Future surveys of large-scale structure will be able to measure perturbations on the scale of the cosmological horizon, and so could potentially probe a number of novel relativistic effects that are negligibly small on sub-horizon scales. These effects leave distinctive signatures in the power spectra of clustering observables and, if measurable, would open a new window on relativistic cosmology. We quantify the size and detectability of the effects for the most relevant future large-scale structure experiments: spectroscopic and photometric galaxy redshift surveys, intensity mapping surveys of neutral hydrogen, and radio continuum surveys. Our forecasts show that next-generation experiments, reaching out to redshifts z 4, will not be able to detect previously-undetected general-relativistic effects by using individual tracers of the density field, although the contribution of weak lensing magnification on large scales should be clearly detectable. We also perform a rigorous joint forecast for the detection of primordial non-Gaussianity through the excess power it produces in the clustering of biased tracers on large scales, finding that uncertainties of σ(f NL ) ∼ 1 − 2 should be achievable. We study the level of degeneracy of these large-scale effects with several tracer-dependent nuisance parameters, quantifying the minimal priors on the latter that are needed for an optimal measurement of the former. Finally, we discuss the systematic effects that must be mitigated to achieve this level of sensitivity, and some alternative approaches that should help to improve the constraints. The computational tools developed to carry out this study, which requires the full-sky computation of the theoretical angular power spectra for O(100) redshift bins, as well as realistic models of the luminosity function, are publicly available at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.