The impact of the electromagnetic waves (EM) on human neurons (HN) has been under investigation for decades, in efforts to understand the impact of cell phones (radiation) on human health, or radiation absorption by HN for medical diagnosis and treatment. Research issues including the wave frequency, power intensity, reflections and scattering, and penetration depths are of important considerations to be incorporated into the research study. In this study, computer simulation for the EM exposure to HN was studied for the purpose of determining the upper limits of the electric and magnetic field intensities, power consumption, reflections and transmissions, and the change in temperature resulting from the power absorption by human neurons. Both high frequency structural simulators (HFSS) from ANSYS software, and COMSOL multi-physics were used for the simulation of the EM transmissions and reflections, and the temperature profile within the cells, respectively. For the temperature profile estimation, the study considers an electrical source of 0.5 watt input power, 64 MHz. The EM simulation was looking into the uniformity of the fields within the sample cells. The size of the waveguide was set to be appropriate for a small animal model to be conducted in the future. The incident power was fully transmitted throughout the waveguide, and less than 1% reflections were observed from the simulation. The minimum reflected power near the sample under investigation was found to be with negligible reflected field strengths. The temperature profile resulting from the COMSOL simulation was found to be near 0.25 m°K, indicating no change in temperature on the neuro cells under the EM exposure. The paper details the simulation results for the EM response determined by HFSS, and temperature profile simulated by COMSOL.
Background The rapid development of a variety of devices that emit Radiofrequency Electromagnetic fields (RF-EMF) has sparked growing interest in their interaction with biological systems and the beneficial effects on human health. As a result, investigations have been driven by the potential for therapeutic applications, as well as concern for any possible negative health implications of these EM energies [1-4]. Recent results have indicated specific tuning of experimental and clinical RF exposure may lead to their clinical application toward beneficial health outcomes [5]. Method In the current study, a mathematical and computer simulation model to analyze a specific RF-EMF exposure on a human head model was developed. Impetus for this research was derived from results of our previous experiments which revealed that Repeated Electromagnetic Field Stimulation (REMFS) decreased the toxic levels of beta amyloid (Aβ) in neuronal cells, thereby suggesting a new potential therapeutic strategy for the treatment of Alzheimer's disease (AD). Throughout development of the proposed device, experimental variables such as the EM frequency range, specific absorption rate (SAR), penetration depth, and innate properties of different tissues have been carefully considered. Results RF-EMF exposure to the human head phantom was performed utilizing a Yagi-Uda antenna type possessing high gain (in the order of 10 dbs) at a frequency of 64 MHz and SAR of 0.6 W/Kg. In order to maximize the EM power transmission in one direction, directors were placed in front of the driven element and reflectors were placed behind the driven element. So as to strategically direct the EM field into the center of the brain tissue, while providing field linearity, our analysis considered the field distribution for one versus four antennas. Within the provided dimensions of a typical human brain, results of the Bioheat equation within COMSOL Multiphysics version 5.2a software demonstrated less than a 1 m˚K increase from the absorbed EM power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.