This paper presents a parallel implementation and validation of an accurate and efficient three-dimensional computational model (3D numerical wave tank), based on fully nonlinear potential flow (FNPF) theory, and its extension to incorporate the motion of a laboratory snake piston wavemaker, as well as an absorbing beach, to simulate experiments in a large-scale 3D wave basin. This work is part of a long-term effort to develop a “virtual ” computational wave basin to facilitate and complement large-scale physical wave-basin experiments. The code is based on a higher-order boundary-element method combined with a fast multipole algorithm (FMA). Particular efforts were devoted to making the code efficient for large-scale simulations using high-performance computing platforms. The numerical simulation capability can be tailored to serve as an optimization tool at the planning and detailed design stages of large-scale experiments at a specific basin by duplicating its exact physical and algorithmic features. To date, waves that can be generated in the numerical wave tank (NWT) include solitary, cnoidal, and airy waves. In this paper we detail the wave-basin model, mathematical formulation, wave generation, and analyze the performance of the parallelized FNPF-BEM-FMA code as a function of numerical parameters. Experimental or analytical comparisons with NWT results are provided for several cases to assess the accuracy and applicability of the numerical model to practical engineering problems. [DOI: 10.1115/1.4007597
This paper presents an accurate and efficient threedimensional computational model (3D numerical wave tank), based on fully nonlinear potential flow (FNPF) theory, and its extension to incorporate the motion of a laboratory snake piston wavemaker, to simulate experiments in a large-scale 3D wave basin (i.e. to conduct "virtual" or numerical experiments). The code is based on a higher-order boundary element method combined with a Fast Multipole Algorithm (FMA). Particular efforts were devoted to make the code efficient for large-scale simulations using high-performance computing platforms to complement experimental 3D wave basins. The numerical simulation capability can serve as an optimization tool at the experimental planning and detailed design stages. To date, waves that can be generated in the NWT include solitary, Cnoidal, and Airy waves. In this paper, we detail the model, mathematical formulation, and wave generation. Experimental or analytical comparisons with NWT results are provided for several cases to assess the accuracy and applicability of the numerical model to practical engineering problems. INTRODUCTIONOver the past decade, as modern computing platforms gradually increased in power, accurate and efficient threedimensional (3D) computational wave-basins (called numerical wave tanks or simply NWTs in this paper) have been developed and refined, which simulate complex processes of ocean wave generation, propagation over arbitrary bottom topography, interaction with ocean structures, and dissipation over sloping beaches. These computational tools allow researchers to conduct "virtual" or numerical experiments. Until recently, fluid dynamic phenomena had been mostly investigated by performing laboratory experiments in large-scale 3D wave basins, which are both expensive and time consuming to operate. While not intended
Thermal resistance across the interface between touching surfaces is critical for many industrial applications. We developed a network model to predict the macroscopic thermal resistance of mechanically contacting surfaces. Contacting interfaces are fractally rough, with small islands of locally intimate contact separated by regions with a wider gas filled boundary gap. Heat flow across the interface is therefore heterogeneous and thus the contact model is based on a network of thermal resistors representing boundary resistance at local contacts and the access resistance for lateral transport to contacts. Molecular dynamics simulations have been performed to characterize boundary resistance of Silicon Alumina interfaces for testing the sensitivity of thermal resistance to contact opening. Boltzmann transport simulations of access resistance in Si are conducted in the ballistic transport regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.