Plant communities in North American prairie pothole wetlands vary depending on hydrology, salinity, and anthropogenic disturbance in and around the wetland. We assessed prairie pothole conditions on United States Fish and Wildlife Service fee-title lands in North Dakota and South Dakota to improve our understanding of current conditions and plant community composition. Species-level data were collected at 200 randomly chosen temporary and seasonal wetland sites located on native prairie remnants (n = 48) and previously cultivated lands that were reseeded into perennial grassland (n = 152). The majority of species surveyed appeared infrequently and were low in relative cover. The four most frequently observed species were introduced invasive species common to the Prairie Pothole Region of North America. Our results suggested relative cover of a few invasive species (i.e., Bromus inermis Leyss., Phalaris arundinacea L., and Typha ×glauca Godr. (pro sp.) [angustifolia or domingensis × latifolia]) affect patterns of plant community composition. Wetlands in native and reseeded grasslands possessed distinct plant community composition related to invasive species’ relative cover. Invasive species continue to be prevalent throughout the region and pose a major threat to biological diversity, even in protected native prairie remnants. Despite efforts to convert past agricultural land into biologically diverse, productive ecosystems, invasive species continue to dominate these landscapes and are becoming prominent in prairie potholes located in native areas.
Wetlands deliver a suite of ecosystem services to society. Anthropogenic activities, such as wetland drainage, have resulted in considerable wetland loss and degradation, diminishing the intrinsic value of wetland ecosystems worldwide. Protecting remaining wetlands and restoring degraded wetlands are common management practices to preserve and reclaim wetland benefits to society. Accordingly, methods for monitoring and assessing wetlands are required to evaluate their ecologic condition and outcomes of restoration activities. We used an established methodology for conducting vegetation-based assessments and describe a case study consisting of a wetland condition assessment in the Prairie Pothole Region of the North American Great Plains. We provide an overview of an existing method for selecting wetlands to sample across broad geographic distributions using a spatially balanced statistical design. We also describe site assessment protocols, including vegetation survey methods, and how field data were applied to a vegetation index that categorized wetlands according to ecologic condition. Results of the case study indicated that vegetation communities in nearly 50% of the surveyed wetlands were in very poor or poor condition, while only about 25% were considered good or very good. Approximately 70% of wetlands in native grasslands were categorized as good or very good compared to only 12% of those in reseeded grasslands (formerly cropland). In terms of informing restoration and management activities, results indicated that improved restoration practices could include a greater focus on establishing natural vegetation communities, and both restored and native prairie wetlands would benefit from enhanced management of invasive species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.