As urban growth expands and natural environments fragment, it is essential to understand the ecological roles fulfilled by urban green spaces. To evaluate how urban green spaces function as wildlife habitat, we estimated mammal diversity and metacommunity dynamics in city parks, cemeteries, golf courses, and natural areas throughout the greater Chicago, Illinois, USA region. We found similar α-diversity (with the exception of city parks), but remarkably dissimilar communities in different urban green spaces. Additionally, the type of urban green space greatly influenced species colonization and persistence rates. For example, coyotes (Canis latrans) had the highest, but white-tailed deer (Odocoileus virginianus) the lowest probability of persistence in golf courses compared to other green space types. Further, most species had a difficult time colonizing city parks even when sites were seemingly available. Our results indicate that urban green spaces contribute different, but collectively important, habitats for maintaining and conserving biodiversity in cities.
Wild birds are important in the maintenance and transmission of many zoonotic pathogens. With increasing urbanization and the resulting emergence of zoonotic diseases, it is critical to understand the relationships among birds, vectors, zoonotic pathogens, and the urban landscape. Here, we use wild birds as sentinels across a gradient of urbanization to understand the relative risk of diseases caused by three types of zoonotic pathogens: Salmonella pathogens, mosquito-borne West Nile virus (WNV) and tick-borne pathogens, including the agents of Lyme disease and human anaplasmosis. Wild birds were captured using mist nets at five sites throughout greater Chicago, Illinois, and blood, faecal and ectoparasite samples were collected for diagnostic testing. A total of 289 birds were captured across all sites. A total of 2.8% of birds harboured Ixodes scapularis--the blacklegged tick--of which 54.5% were infected with the agent of Lyme disease, and none were infected with the agent of human anaplasmosis. All infested birds were from a single site that was relatively less urban. A single bird, captured at the only field site in which supplemental bird feeding was practised within the mist netting zone, was infected with Salmonella enterica subspecies enterica. While no birds harboured WNV in their blood, 3.5% of birds were seropositive, and birds from more urban sites had higher exposure to the virus than those from less urban sites. Our results demonstrate the presence of multiple bird-borne zoonotic pathogens across a gradient of urbanization and provide an assessment of potential public health risks to the high-density human populations within the area.
Although ecology is rife with theory that explores how multiple species co‐occur through space and time, the field lacks robust statistical models to parameterize this theory with empirical data, particularly when species are detected imperfectly and data are collected as a time‐series. We address this need by developing an occupancy model that estimates local colonization and extinction rates for two or more interacting species when data are collected across multiple sampling occasions. This model estimates how community composition at a site may change across sampling occasions by assuming the latent occupancy state is a categorical random variable. We used a multinomial‐logit model to parameterize species specific parameters and pairwise interactions between species, both of which can be made a function of covariates. These transition probabilities between community states can then be converted to occupancy or co‐occurrence probabilities to determine how community composition varies along an environmental gradient or through time. As an example, we estimate patterns of co‐occurrence between coyote Canis latrans, Virginia opossum Didelphis virginiana, and raccoon Procyon lotor in Chicago, Illinois, USA with data from a multiyear camera trapping study. Models with pairwise interactions between species greatly out performed models that assumed independence between species. Opossum and raccoon, for example, were far less likely to go extinct in habitat patches where coyotes were present. Community composition at a site depends on species interactions and the local environment. Our model can separate such effects by estimating the underlying processes that define species occurrence patterns. As a result, our model can more explicitly quantify a wide range of ecological dynamics and therefore be used to empirically test ecological theory, such as estimating priority effects at a site or turnover rates between species, both of which can be made to vary as a function of covariates.
Understanding how biodiversity responds to urbanization is challenging, due in part to the single‐city focus of most urban ecological research. Here, we delineate continent‐scale patterns in urban species assemblages by leveraging data from a multi‐city camera trap survey and quantify how differences in greenspace availability and average housing density among 10 North American cities relate to the distribution of eight widespread North American mammals. To do so, we deployed camera traps at 569 sites across these ten cities between 18 June and 14 August. Most data came from 2017, though some cities contributed 2016 or 2018 data if it was available. We found that the magnitude and direction of most species' responses to urbanization within a city were associated with landscape‐scale differences among cities. For example, eastern gray squirrel (Sciurus carolinensis), fox squirrel (Sciurus niger), and red fox (Vulpes vulpes) responses to urbanization changed from negative to positive once the proportion of green space within a city was >~20%. Likewise, raccoon (Procyon lotor) and Virginia opossum (Didelphis virginiana) responses to urbanization changed from positive to negative once the average housing density of a city exceeded about 700 housing units/km2. We also found that local species richness within cities consistently declined with urbanization in only the more densely developed cities (>~700 housing units/km2). Given our results, it may therefore be possible to design cities to better support biodiversity and reduce the negative influence of urbanization on wildlife by, for example, increasing the amount of green space within a city. Additionally, it may be most important for densely populated cities to find innovative solutions to bolster wildlife resilience because they were the most likely to observe diversity losses of common urban species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.