The ChEA software and ChIP-X database is freely available online at: http://amp.pharm.mssm.edu/lib/chea.jsp.
Systems pharmacology is an emerging area of pharmacology which utilizes network analysis of drug action as one of its approaches. By considering drug actions and side effects in the context of the regulatory networks within which the drug targets and disease gene products function, network analysis promises to greatly increase our knowledge of the mechanisms underlying the multiple actions of drugs. Systems pharmacology can provide new approaches for drug discovery for complex diseases. The integrated approach used in systems pharmacology can allow for drug action to be considered in the context of the whole genome. Network-based studies are becoming an increasingly important tool in understanding the relationships between drug action and disease susceptibility genes. This review discusses how analysis of biological networks has contributed to the genesis of systems pharmacology and how these studies have improved global understanding of drug targets, suggested new targets and approaches for therapeutics, and provided a deeper understanding of the effects of drugs. Taken together, these types of analyses can lead to new therapeutic options while improving the safety and efficacy of existing medications.
BackgroundIn recent years, mammalian protein-protein interaction network databases have been developed. The interactions in these databases are either extracted manually from low-throughput experimental biomedical research literature, extracted automatically from literature using techniques such as natural language processing (NLP), generated experimentally using high-throughput methods such as yeast-2-hybrid screens, or interactions are predicted using an assortment of computational approaches. Genes or proteins identified as significantly changing in proteomic experiments, or identified as susceptibility disease genes in genomic studies, can be placed in the context of protein interaction networks in order to assign these genes and proteins to pathways and protein complexes.ResultsGenes2Networks is a software system that integrates the content of ten mammalian interaction network datasets. Filtering techniques to prune low-confidence interactions were implemented. Genes2Networks is delivered as a web-based service using AJAX. The system can be used to extract relevant subnetworks created from "seed" lists of human Entrez gene symbols. The output includes a dynamic linkable three color web-based network map, with a statistical analysis report that identifies significant intermediate nodes used to connect the seed list.ConclusionGenes2Networks is powerful web-based software that can help experimental biologists to interpret lists of genes and proteins such as those commonly produced through genomic and proteomic experiments, as well as lists of genes and proteins associated with disease processes. This system can be used to find relationships between genes and proteins from seed lists, and predict additional genes or proteins that may play key roles in common pathways or protein complexes.
Long-QT syndrome (LQTS) is a congenital or drug-induced change in electrical activity of the heart that can lead to fatal arrhythmias. Mutations in 12 genes encoding ion channels and associated proteins are linked with congenital LQTS. With a computational systems biology approach, we found that gene products involved in LQTS formed a distinct functional neighborhood within the human interactome. Other diseases form similarly selective neighborhoods, and comparison of the LQTS neighborhood with other disease-centered neighborhoods suggested a molecular basis for associations between seemingly unrelated diseases that have increased risk of cardiac complications. By combining the LQTS neighborhood with published genome-wide association study data, we identified previously unknown singlenucleotide polymorphisms likely to affect the QT interval. We found that targets of U.S. Food and Drug Administration (FDA)-approved drugs that cause LQTS as an adverse event were enriched in the LQTS neighborhood. With the LQTS neighborhood as a classifier, we predicted drugs likely to have risks for QT effects and we validated these predictions with the FDA's Adverse Events Reporting System, illustrating how network analysis can enhance the detection of adverse drug effects associated with drugs in clinical use. Thus, the identification of disease-selective neighborhoods within the human interactome can be useful for predicting new gene variants involved in disease, explaining the complexity underlying adverse drug side effects, and predicting adverse event susceptibility for new drugs.
Systems pharmacology involves the application of systems biology approaches, combining largescale experimental studies with computational analyses, to the study of drugs, drug targets, and drug effects. Many of these initial studies have focused on identifying new drug targets, new uses of known drugs, and systems-level properties of existing drugs. This review focuses on systems pharmacology studies that aim to better understand drug side effects and adverse events. By studying the drugs in the context of cellular networks, these studies provide insights into adverse events caused by off-targets of drugs as well as adverse events-mediated complex network responses. This allows rapid identification of biomarkers for side effect susceptibility. In this way, systems pharmacology will lead to not only newer and more effective therapies, but safer medications with fewer side effects.The clinical usefulness of a medication is related to its efficacy in treating specified diseases as well as its safety and tolerability in patients. It is important to understand not only the intended effects of a drug, but also the side effects and potential adverse events associated with treatment. While initial studies of drugs aim to elucidate mechanism of action and therapeutic effects, concerns over potential adverse events can prevent drugs from reaching the market and has led to several high-profile post-market drug failures. Systems pharmacology studies, which integrate large data sets such as protein-protein interaction networks and the FDA adverse event reports with computational analyses, can enhance the understanding of drug adverse events by looking at the effects of a drug in the context of cellular networks as well as exploring relationships between drugs. This can allow better understanding of adverse event pathogenesis and individual patient susceptibility to side effects, as well as identification of new targets. Identification of additional targets (offtargets) for drugs can subsequently lead to improved drug development to decrease offtarget effects and potential repurposing of existing drugs for different diseases. We have previously surveyed the network-based computational techniques used in systems pharmacology studies 1 and reviewed how systems pharmacology approaches are helping direct the evolution toward personalized medicine 2,3 and directing drug discovery. 3,4 This review discusses different ways in which drug side effects and adverse events arise in the context of cellular networks and recent advances in understanding these pathological processes arising from systems pharmacology studies of drug structures, targets, and their relationships to signaling networks that regulate both therapeutic and adverse biological responses (Figure 1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.