Abstract. Canada's RADARSAT missions improve the potential to study past flood events; however, existing tools to derive flood depths from this remote-sensing data do not correct for errors, leading to poor estimates. To provide more accurate gridded depth estimates of historical flooding, a new tool is proposed that integrates Height Above Nearest Drainage and Cost Allocation algorithms. This tool is tested against two trusted, hydraulically derived, gridded depths of recent floods in Canada. This validation shows the proposed tool outperforms existing tools and can provide more accurate estimates from minimal data without the need for complex physics-based models or expert judgement. With improvements in remote-sensing data, the tool proposed here can provide flood researchers and emergency managers accurate depths in near-real time.
Abstract. Canada's RADARSAT missions improve the potential to study past flood events; however, existing tools to derive flood depths from this remote-sensing data do not correct for errors, leading to poor estimates. To provide more accurate gridded depth estimates of historical flooding, a new tool is proposed that integrates Height Above Nearest Drainage and Cost Allocation algorithms. This tool is tested against two trusted, hydraulically derived, gridded depths of recent floods in Canada. This validation shows the proposed tool outperforms existing tools and can provide more accurate estimates from minimal data without the need for complex physics-based models or expert judgement. With improvements in remote-sensing data, the tool proposed here can provide flood researchers and emergency managers accurate depths in near-real time.
After a century of semi‐restricted floodplain development, Southern Alberta, Canada, was struck by the devastating 2013 Flood. Aging infrastructure and limited property‐level floodproofing likely contributed to the $4–6 billion (CAD) losses. Following this catastrophe, Alberta has seen a revival in flood management, largely focused on structural protections. However, concurrent with the recent structural work was a 100,000+ increase in Calgary's population in the 5 years following the flood, leading to further densification of high‐hazard areas. This study implements the novel Stochastic Object‐based Flood damage Dynamic Assessment (SOFDA) model framework to quantify the progression of the direct‐damage flood risk in a mature urban neighborhood after the 2013 Flood. Five years of remote‐sensing data, property assessment records, and inundation simulations following the flood are used to construct the model. Results show that in these 5 years, vulnerability trends (like densification) have increased flood risk by 4%; however, recent structural mitigation projects have reduced overall flood risk by 47% for this case study. These results demonstrate that the flood management revival in Southern Alberta has largely been successful at reducing flood risk; however, the gains are under threat from continued development and densification absent additional floodproofing regulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.