Migmatite domes are common in metamorphic core complexes. Dome migmatites deform in the partially molten or magmatic state and commonly record complex form surfaces, folds, and fabrics while units mantling the dome display a simpler geometry, typically formed by transposition during crustal extension. We use field observations and magnetic fabrics in the Naxos dome (Greece) to quantify the complex flow of anatectic crust beneath an extensional detachment system. The internal structure of the Naxos dome is characterized by second‐order domes (subdomes), pinched synforms, and curved lineation trajectories, which suggest that buoyancy‐driven flow participated in dome evolution. Subdomes broadly occur within two compartments that are separated by a steep, N‐S oriented, high‐strain zone. This pattern has been recognized in domes formed by polydiapirism and in models of isostasy‐dominated flow. The preferred model involves a combination of buoyancy‐ and isostasy‐driven processes: the Naxos dome may have been generated by regional N‐S extension that triggered convergent flow of partially molten crust at depth and the upwelling of anatectic migmatites within the dome. This pattern is complicated by gravitational instabilities and/or overturning of the high melt fraction crust leading to the growth of subdomes. As the migmatites within the Naxos dome reached a higher structural level, they were affected by regional top‐to‐the‐NNE kinematics of the detachment system. Dome formation therefore occurred by a combination of coeval and coupled processes: upper crustal extension, deep crust contraction during convergent flow of anatectic crust, diapirism and/or density‐driven crustal convection forming subdomes, and north directed detachment kinematics.
[1] Many migmatites represent crystallized partially molten crust and therefore record the mechanisms and pathways of orogenic crustal flow. Field and microstructural methods may be insufficient to characterize the planar and linear elements of rock fabric in migmatites due to obscured flow fabrics or protracted deformation. In the Naxos dome (Greece), we test the anisotropy of magnetic susceptibility (AMS) as a tool for recovering mineral fabric symmetry and the kinematic axes of flow in migmatites. Measurements of 155 migmatite samples yield dominantly low values (<300 × 10 −6 [SI]) of bulk magnetic susceptibility (K m ) consistent with biotite being the dominant carrier of the AMS. Higher values of K m , thermomagnetic, hysteresis, and microstructural data, however, suggest a ferromagnetic contribution from magnetite in a subset of samples (N = 15). Using electron backscatter diffraction (EBSD) analysis, we establish the correspondence of the biotite subfabric with the AMS and structural fabric of the Naxos migmatites. EBSD data from biotite suggests that magnetic lineation in these dominantly paramagnetic migmatites arises from a zone axis orientation of biotite crystals organized about the direction of viscoplastic flow. Over a range of spatial scales, migmatitic foliation and magnetic foliation are well correlated. The magnetic lineation recovered by AMS displays a coherent organization despite the heterogeneous structure and composition of the Naxos migmatites. These data suggest that the apparent complexity of migmatites masks a simpler flow regime controlled by bulk viscoplastic flow. Furthermore, our study demonstrates the utility of the AMS method for studying the dynamics of partially molten orogenic crust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.