Despite the arsenal of technologies employed to control foodborne nontyphoidal Salmonella (NTS), infections have not declined in decades. Poultry is the primary source of NTS outbreaks, as well as the fastest growing meat sector worldwide. With recent FDA rules for phasing-out antibiotics in animal production, pressure is mounting to develop new pathogen reduction strategies. We report on a technology to reduce Salmonella enteritidis in poultry. We engineered probiotic E. coli Nissle 1917, to express and secrete the antimicrobial peptide, Microcin J25. Using in vitro experiments and an animal model of 300 turkeys, we establish the efficacy of this technology. Salmonella more rapidly clear the ceca of birds administered the modified probiotic than other treatment groups. Approximately 97% lower Salmonella carriage is measured in a treated group, 14 days post-Salmonella challenge. Probiotic bacteria are generally regarded as safe to consume, are bile-resistant and can plausibly be modified to produce a panoply of antimicrobial peptides now known. The reported systems may provide a foundation for platforms to launch antimicrobials against gastrointestinal tract pathogens, including ones that are multi-drug resistant.
Oncocin is a proline-rich antimicrobial peptide that inhibits protein synthesis by binding to the bacterial ribosome. In this work, the antimicrobial activity of oncocin was improved by systematic peptide mutagenesis and activity evaluation. We found that a pair of cationic substitutions (P4K and L7K/R) improves the activity by 2-4 fold (p<0.05) against multiple Gram-negative bacteria. An in vitro transcription / translation assay indicated that the increased activity was not because of stronger ribosome binding. Rather a cellular internalization assay revealed a higher internalization rate for the optimized analogs thereby suggesting a mechanism to increase potency. In addition, we found that the optimized peptides’ benefit is dependent upon nutrient-depleted media conditions. The molecular design and characterization strategies have broad potential for development of antimicrobial peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.