Bacterial plasmids substantially contribute to the rapid spread of antibiotic resistance, which is a crisis in healthcare today. Coevolution of plasmids and their hosts promotes this spread of resistance by ameliorating the cost of plasmid carriage. However, our knowledge of plasmid–bacteria coevolution is solely based on studies done in well-mixed liquid cultures, even though biofilms represent the main way of bacterial life on Earth and are responsible for most infections. The spatial structure and the heterogeneity provided by biofilms are known to lead to increased genetic diversity as compared with well-mixed liquids. Therefore, we expect that growth in this complex environment could affect the evolutionary trajectories of plasmid–host dyads. We experimentally evolved Shewanella oneidensis MR-1 with plasmid pBP136Gm in biofilms and chemostats and sequenced the genomes of clones and populations. Biofilm populations not only maintained a higher diversity of mutations than chemostat populations but contained a few clones with markedly more persistent plasmids that evolved via multiple distinct trajectories. These included the acquisition of a putative toxin–antitoxin transposon by the plasmid and chromosomal mutations. Some of these genetic changes resulted in loss of plasmid transferability or decrease in plasmid cost. Growth in chemostats led to a higher proportion of variants with decreased plasmid persistence, a phenomenon not detected in biofilms. We suggest that the presence of more stable plasmid–host dyads in biofilms reflects higher genetic diversity and possibly unknown selection pressures. Overall, this study underscores the importance of the mode of growth in the evolution of antibiotic-resistant bacteria.
The design and synthesis of flavonoid analogues as combinatorial scaffolds is reported. Using commercially available materials, we synthesized chalcones with fluoro and carboxy groups. Nitration of these compounds generated highly functionalized flavonoid scaffolds with an o-fluoronitrobenzene template. Subsequent cyclizations of these chalcones resulted in the formation of several flavone and flavonone scaffolds. One of the flavonones was chosen as the scaffold to synthesize flavonoid derivatives on the solid phase. A series of flavonoid derivatives were obtained in high yields, which demonstrates that these highly functionalized scaffolds can be used in the synthesis of natural product-based combinatorial libraries for drug discovery.
One-bead one-compound combinatorial chemistry together with a high-throughput screen based on fluorescently labeled enzyme allowed the identification of slow binding inhibitors of human serine racemase (hSR). A peptide library of topographically segregated encoded resin beads was synthesized, and several hSR-binding compounds were isolated, identified, and resynthesized for further kinetic study. Of these, several showed inhibitory effects with moderate potency (high micromolar K(I)s) toward hSR. A clear structural motif was identified consisting of 3-phenylpropionic acid and histidine moieties. Importantly, the inhibitors identified showed no structural similarities to the natural substrate, L-serine. Detailed kinetic analyses of the properties of selected inhibitors show that the screening protocol used here selectively identifies slow binding inhibitors. They provide a pharmacophore for the future isolation of more potent ligands that may prove useful in probing and understanding the biological role of hSR.
4-Amino-4-deoxychorismate synthase (ADCS) catalyzes the first step in the conversion of chorismate into p-aminobenzoate, which is incorporated into folic acid. We aim to discover compounds that inhibit ADCS and serve as leads for a new class of antimicrobial compounds. This report presents (1) synthesis of a mass-tag encoded library based on a "staged" design, (2) massively parallel fluorescence-based on-bead screening, (3) rapid structural identification of hits, and (4) full kinetic analysis of ADCS. All inhibitors are competitive against chorismate and Mg(2+). The most potent ADCS inhibitor identified has a K(i) of 360 microM. We show that the combinatorial diversity elements add substantial binding affinity by interacting with residues outside of but proximal to the active site. The methods presented here constitute a paradigm for inhibitor discovery through active site targeting, enabled by rapid library synthesis, facile massively parallel screening, and straightforward hit identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.