Cancer immunotherapy, a promising and widely applied mode of oncotherapy, makes use of immune stimulants and modulators to overcome the immune dysregulation present in cancer, and leverage the host’s immune capacity to eliminate tumors. Although some success has been seen in this field, toxicity and weak immune induction remain challenges. Liposomal nanosystems, previously used as targeting agents, are increasingly functioning as immunotherapeutic vehicles, with potential for delivery of contents, immune induction, and synergistic drug packaging. These systems are tailorable, multifunctional, and smart. Liposomes may deliver various immune reagents including cytokines, specific T-cell receptors, antibody fragments, and immune checkpoint inhibitors, and also present a promising platform upon which personalized medicine approaches can be built, especially with preclinical and clinical potentials of liposomes often being frustrated by inter- and intrapatient variation. In this review, we show the potential of liposomes in cancer immunotherapy, as well as the methods for synthesis and in vivo progression thereof. Both preclinical and clinical studies are included to comprehensively illuminate prospects and challenges for future research and application.
Objectives Nanomedicines represent theragnostic alternatives to traditional candidate drugs, with increased targeting and delivery potential due to their size and functional tailorability. Biological activity typically relies on nanomaterials permeating into the intracellular environment, necessitating characterization of uptake and intracellular trafficking pathways. Spheroids’ three-dimensional architecture and heterogenous cellular distribution offer an in-vivo-representative platform to assess the biological activity of nanoparticles (NPs). This study aimed to develop an A549 alveolar carcinoma spheroid model as a NP uptake assessment platform for carboxyl–polythene glycol-functionalized gold NPs affording further biological characterization opportunities in nanomedicine. Methods A549 spheroids were generated via the liquid overlay method, and their morphology and viability were assessed for 21 days. Cytotoxicity was assessed via lactate dehydrogenase release. NP uptake was elucidated using uptake pathway inhibition, combined with CytoViva hyperspectral imaging of sectioned spheroids to count internalized NPs. Key findings Cytotoxicity was absent for all exposure groups. Clathrin-mediated endocytosis was the primary endocytic mechanism (33.5–54.8% of uptake), which may precede lysosomal degradation. Lysosomal membrane permeabilization appears to be a potential downstream application. Low penetration into spheroids (4.5 μm) suggests the failure of NPs to traverse cellular layers in the spheroid. Conclusions Although poor uptake was observed, a multicellular spheroid model of A549 alveolar carcinoma cells was established, allowing for similar future uptake assessment of various NPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.