The Hyades, Praesepe, and Pleiades are well studied stellar clusters that anchor important secondary stellar age indicators. Recent studies have shown that main sequence turn off-based ages for these clusters may depend on the degree of rotation in the underlying stellar models. Rotation induces structural instabilities that can enhance the chemical mixing of a star, extending its fuel supply. In addition, rotation introduces a modulation of the star's observed magnitude and color due to the effects of gravity darkening. We aim to investigate the extent to which stellar rotation affects the age determination of star clusters. We utilize the MESA stellar evolution code to create models that cover a range of rotation rates corresponding to Ω/Ω c = 0.0 to 0.6 in 0.1 dex steps, allowing the assessment of variations in this dimension. The statistical analysis package, MATCH, is employed to derive ages and metallicities by fitting our MESA models to Tycho B T , V T and 2MASS J, K s colormagnitude diagrams. We find that the derived ages are relatively insensitive to the effects of rotation. For the Hyades, Praesepe, and Pleiades, we derive ages based on synthetic populations that model a distribution of rotation rates or a fixed rate. Across each case, derived ages tend to agree roughly within errors, near 680, 590, and 110 − 160 Myr for the Hyades, Praesepe, and Pleiades, respectively. These ages are in agreement with Li depletion boundary-based ages and previous analyses that used non-rotating isochrones. Our methods do not provide a strong constraint on the metallicities of these clusters.
We present a detailed study of stellar rotation in the massive 1.5 Gyr old cluster NGC 1846 in the Large Magellanic Cloud. Similar to other clusters at this age, NGC 1846 shows an extended main sequence turn-off (eMSTO), and previous photometric studies have suggested it could be bimodal. In this study, we use MUSE integral-field spectroscopy to measure the projected rotational velocities (v sin i) of around 1 400 stars across the eMSTO and along the upper main sequence of NGC 1846. We measure v sin i values up to ∼ 250 km s −1 and find a clear relation between the v sin i of a star and its location across the eMSTO. Closer inspection of the distribution of rotation rates reveals evidence for a bimodal distribution, with the fast rotators centred around v sin i = 140 km s −1 and the slow rotators centred around v sin i = 60 km s −1 . We further observe a lack of fast rotating stars along the photometric binary sequence of NGC 1846, confirming results from the field that suggest that tidal interactions in binary systems can spin down stars. However, we do not detect a significant difference in the binary fractions of the fast and slowly rotating sub-populations. Finally, we report on the serendipitous discovery of a planetary nebula associated with NGC 1846.
The extended main sequence turn offs (eMSTOs) of several young to intermediate age clusters are examined in the Magellanic Clouds and the Milky Way. We explore the effects of extended star formation (eSF) and a range of stellar rotation rates on the behavior of the color-magnitude diagram (CMD), paying particular attention to the MSTO. We create synthetic stellar populations based on MESA stellar models to simulate observed Hubble Space Telescope and Gaia star cluster data. We model the effect of rotation as a non-parametric distribution, allowing for maximum flexibility. In our models the slow rotators comprise the blueward, and fast rotators the redward portion of the eMSTO. We simulate data under three scenarios: non-rotating eSF, a range of rotation rates with a single age, and a combination of age and rotation effects. We find that two of the five clusters (the youngest and oldest) favor an age spread, but these also achieve the overall worst fits of all clusters. The other three clusters show comparable statistical evidence between rotation and an age spread. In all five cases, a rotation rate distribution alone is capable of qualitatively matching the observed eMSTO structure. In future work, we aim to compare our predicted V sin i with observations in order to better constrain the physics related to stellar rotation.
Two magnetic braking models are implemented in MESA for use in the MIST stellar model grids. Stars less than about 1.3 solar masses are observed to spin down over time through interaction with their magnetized stellar winds (i.e., magnetic braking). This is the basis for gyrochronology and is fundamental to the evolution of lower-mass stars. The detailed physics behind magnetic braking are uncertain, as are 1D stellar evolution models. Thus, we calibrate our models and compare to data from open clusters. Each braking model tested here is capable of reproducing aspects of the data, with important distinctions; neither fully accounts for the observations. The Matt et al. prescription matches the slowly rotating stars observed in open clusters but tends to overestimate the presence of rapidly rotating stars. The Garraffo et al. prescription often produces too much angular momentum loss to accurately match the observed slow sequence for lower-mass stars but reproduces the bimodal nature of slowly and rapidly rotating stars observed in open clusters fairly well. Our models additionally do not reproduce the observed solar lithium depletion, corroborating previous findings that effects other than rotation may be important. We find additional evidence that some level of mass dependency may be missing in these braking models to match the rotation periods observed in clusters older than 1 Gyr better.
Young star clusters enable us to study the effects of stellar rotation on an ensemble of stars of the same age and across a wide range in stellar mass and are therefore ideal targets for understanding the consequences of rotation on stellar evolution. We combine MUSE spectroscopy with HST photometry to measure the projected rotational velocities (Vsin i) of 2 184 stars along the split main sequence and on the main sequence turn-off (MSTO) of the 100 Myr-old massive (105 M⊙) star cluster NGC 1850 in the Large Magellanic Cloud. At fixed magnitude, we observe a clear correlation between Vsin i and colour, in the sense that fast rotators appear redder. The average Vsin i values for stars on the blue and red branches of the split main sequence are ∼100 km s−1 and ∼200 km s−1, respectively. The values correspond to about $25-30{{\%}}$ and $50-60{{\%}}$ of the critical rotation velocity and imply that rotation rates comparable to those observed in field stars of similar masses can explain the split main sequence. Our spectroscopic sample contains a rich population of ∼200 fast rotating Be stars. The presence of shell features suggests that 23 per cent of them are observed through their decretion disks, corresponding to a disk opening angle of 15 degrees. These shell stars can significantly alter the shape of the MSTO, hence care should be taken when interpreting this photometric feature. Overall, our findings impact our understanding of the evolution of young massive clusters and provide new observational constraints for testing stellar evolutionary models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.