Wetlands are an important natural source of methane to the atmosphere. The amounts of methane emitted from inundated ecosystems in the United States can vary greatly from area to area. Seasonal temperature,
Bycatch of marine megafauna in fishing gear is a problem with global implications. Bycatch rates can be difficult to quantify, especially in countries where there are limited data on the abundance and distribution of coastal marine mammals, the distribution and intensity of fishing effort, and coincident interactions, and limited bycatch mitigation strategies. The dugong Dugong dugon is an IUCN-listed Vulnerable species found from the eastern coast of Africa to the western Pacific. As foragers of seagrass, they are highly susceptible to bycatch in small-scale fisheries. To address the knowledge gaps surrounding marine mammal bycatch, we used existing survey and fishing effort data to spatially characterize the risk of bycatch for this species. Using Sabah, Malaysia, as a case study, we employed presence-only modeling techniques to identify habitat associations of dugongs using a maximum entropy distribution model (MaxEnt) based on published sightings data and several geophysical parameters: coastal distance, depth, insolation, and topographic openness. Model outputs showed distance from the coast as the highest-contributing variable to the probability of dugong presence. Results were combined with previously published fishing effort maps of this area to develop a predictive bycatch risk surface. Our analyses identified several areas of high risk where dugong surveys were conducted, but also identified high-risk areas in previously unsurveyed locations. Such methods can be used to direct field activities and data collection efforts and provide a robust template for how existing sightings and fishing effort data can be used to facilitate conservation action in data-limited regions.
Afforestation of marginal agricultural lands represents a promising option for carbon sequestration in terrestrial ecosystems. An ecosystem carbon model was used to generate new national maps of annual net primary production (NPP), one each for continuous land covers of 'forest', 'crop', and 'rangeland' over the entire U. S. continental area. Direct inputs of satellite "greenness" data from the Advanced Very High Resolution Radiometer (AVHRR) sensor into the NASA-CASA carbon model at 8-km spatial resolution were used to estimate spatial variability in monthly NPP and potential biomass accumulation rates in a uniquely detailed manner. The model predictions of regrowth forest production lead to a conservative national projection of 0.3 Pg C as potential carbon stored each year on relatively low-production crop or rangeland areas. On a regional level, the top five states for total crop afforestation potential were: Texas, Minnesota, Iowa, Illinois, and Missouri, whereas the top five states for total rangeland afforestation potential are: Texas, California, Montana, New Mexico, and Colorado. Afforestation at this level of intensity has the capacity to offset at least one-fifth of annual fossil fuel emission of carbon in the United States. These projected afforestation carbon gains also match or exceed recent estimates of the annual sink for atmospheric CO 2 in currently forested area of the country.
On a global basis, plants and soils may hold more than twice the amount of carbon present in the atmosphere [Geider et al., 2001]. Under increasing atmospheric carbon dioxide (CO2) concentrations and subsequently warming temperatures, these large biogenic pools may change in size [Cox et al., 2000]. Due to a lack of long‐term field studies, there is uncertainty as to whether vegetation and soils will act as a net sink or a source of atmospheric CO2 in coming years. It is certain, however, that no retrospective analysis of the U.S. carbon balance will be possible without a comprehensive historical baseline of the sizes of various ecosystem carbon pools and the variability in their net annual increments.
We investigated the hypothesis that maritime climatic factors associated with summer fog and low cloud stratus (summer marine layer) help explain the compositional diversity of chaparral in the coast range of central California. We randomly sampled chaparral species composition in 0.1-hectare plots along a coast-to-interior gradient. For each plot, climatic variables were estimated and soil samples were analyzed. We used Cluster Analysis and Principle Components Analysis to objectively categorize plots into climate zone groups. Climate variables, vegetation composition and various diversity measures were compared across climate zone groups using ANOVA and nonmetric multidimensional scaling. Differences in climatic variables that relate to summer moisture availability and winter freeze events explained the majority of variance in measured conditions and coincided with three chaparral assemblages: maritime (lowland coast where the summer marine layer was strongest), transition (upland coast with mild summer marine layer influence and greater winter precipitation), and interior sites that generally lacked late summer water availability from either source. Species turnover (β-diversity) was higher among maritime and transition sites than interior sites. Coastal chaparral differs from interior chaparral in having a higher obligate seeder to facultative seeder (resprouter) ratio and by being dominated by various Arctostaphylos species as opposed to the interior dominant, Adenostoma fasciculatum. The maritime climate influence along the California central coast is associated with patterns of woody plant composition and β-diversity among sites. Summer fog in coastal lowlands and higher winter precipitation in coastal uplands combine to lower late dry season water deficit in coastal chaparral and contribute to longer fire return intervals that are associated with obligate seeders and more local endemism. Soil nutrients are comparatively less important in explaining plant community composition, but heterogeneous azonal soils contribute to local endemism and promote isolated chaparral patches within the dominant forest vegetation along the coast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.