Rodent pests are especially problematic in terms of agriculture and public health since they can inflict considerable economic damage associated with their abundance, diversity, generalist feeding habits and high reproductive rates. To quantify rodent pest impacts and identify trends in rodent pest research impacting on small-holder agriculture in the Afro-Malagasy region we did a systematic review of research outputs from 1910 to 2015, by developing an a priori defined set of criteria to allow for replication of the review process. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We reviewed 162 publications, and while rodent pest research was spatially distributed across Africa (32 countries, including Madagascar), there was a disparity in number of studies per country with research biased towards four countries (Tanzania [25%], Nigeria [9%], Ethiopia [9%], Kenya [8%]) accounting for 51% of all rodent pest research in the Afro-Malagasy region. There was a disparity in the research themes addressed by Tanzanian publications compared to publications from the rest of the Afro-Malagasy region where research in Tanzania had a much more applied focus (50%) compared to a more basic research approach (92%) in the rest of the Afro-Malagasy region. We found that pest rodents have a significant negative effect on the Afro-Malagasy small-holder farming communities. Crop losses varied between cropping stages, storage and crops and the highest losses occurred during early cropping stages (46% median loss during seedling stage) and the mature stage (15% median loss). There was a scarcity of studies investigating the effectiveness of various management actions on rodent pest damage and population abundance. Our analysis highlights that there are inadequate empirical studies focused on developing sustainable control methods for rodent pests and rodent pests in the Africa-Malagasy context is generally ignored as a research topic.
Context The multimammate mouse, Mastomys natalensis (Smith, 1834), is an important agricultural pest in southern and eastern Africa where it can cause significant crop losses. Mastomys natalensis is known to consume a variety of food in response to the availability of food items. However, it is currently unknown whether maize crop growth stages affect the spatio-temporal diet of this species. Aims We examined the foods consumed by M. natalensis in different habitats and seasons in central Tanzania and Swaziland. Methods Diet was investigated in Tanzania in four different habitats (woodland, vegetable gardens, maize fields and fallow land) during different maize crop growth stages between March 2008 and February 2009. In Swaziland, this was conducted in three habitats (fallow land, cultivated fields and pristine land) during three crop growth stages (pre-planting, vegetative stage and post-harvest) between March 2008 and April 2009. Micro-histological examination of undigested fragments from the stomachs of trapped animals was made whereby the preserved stomach content was placed in a Petri dish and sorted using a 25× or 50× magnification binocular stereoscope. Stomach contents were identified as: grain and/or seeds (both grasses and maize), plant material (roots, stems and leaves), invertebrates, pods of seeds, fruits (vegetable fruit such as tomato), animal hairs and unidentified matter. If necessary, a lugol solution was used to determine the presence of starch for maize and grass seeds or grains. Key results In both countries, grain predominated in the diet of M. natalensis. Statistical analyses showed that there were no differences due to seasons or habitats. Therefore, the percentage volume and relative importance were the same across habitats and seasons in both countries. Conclusions Our findings highlight clearly that M. natalensis is a generalist species feeding on available resources depending on the season and the habitat. Its preference for grain may account for its abundance in maize plantations and confirms it as one of the major pests in crop plantations, especially grain. Implications This information offers a useful tool for determining the pest status in different habitats and/or seasons. The findings of this study have implications for agriculture and conservation.
Context Rodent pests can have severe impacts on crop production in sub-Saharan Africa. In particular, the multimammate mouse Mastomys natalensis severely damages agricultural crops in southern and eastern Africa, leading to significant losses. Both its population ecology and breeding biology have been studied in agricultural and natural habitats. Population numbers erupt depending on the timing and amount of rainfall and may reach plague proportions, especially in agricultural settings, where it may become a serious pest. However, the ecology of this species, in particular its interactions with other species within the context of human settlement, is poorly understood. It may occasionally enter houses, but the degree to which it does so and the factors influencing this movement are not known. Aims We investigated the relationship between Rattus spp. and M. natalensis entering buildings in an agro-ecological setting. We predicted that M. natalensis would enter houses more readily when food availability was lowest in the surrounding fields, and when the larger Rattus spp. were absent. Methods We followed 40 individuals of M. natalensis in Swaziland and Namibia by radio-telemetry. Mice were captured in maize fields within 50 m of a homestead and fitted with radio-transmitters at three different times corresponding to different stages of crop development: pre-harvest, post-harvest and pre-planting. To corroborate the findings of the telemetry study, a non-toxic marker, rhodamine B, was mixed with standard bait and left at bait stations inside houses in 10 homesteads in Swaziland and Tanzania. Key results Mice remained in the fields during the entire period of study in Swaziland, but entered buildings in Namibia during the post-harvest stage, which may represent a period of food shortage for these mice in the field. Rodents captured after baiting with rhodamine B demonstrated that Rattus spp. predominated within the houses. A small number of rhodamine B-marked M. natalensis were captured outside the houses, the proportion declining with distance away from the houses. Conclusions These results suggest that in a typical rural African setting dominated by subsistence agriculture, Rattus spp. (when present) competitively exclude the smaller M. natalensis from entering houses. Implications Interactions between rodent pest species may be important in determining which rodent species enter houses in rural African landscapes. Consideration of such interactions may play an important role when developing pest management strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.