Helms, ER, Storey, A, Cross, MR, Browm, SR, Lenetsky, S, Ramsay, H, Dillen, C, and Zourdos, MC. RPE and velocity relationships for the back squat, bench press, and deadlift in powerlifters. J Strength Cond Res 31(2): 292-297, 2017-The purpose of this study was to compare average concentric velocity (ACV) and rating of perceived exertion (RPE) based on repetitions in reserve on the squat, bench press, and deadlift. Fifteen powerlifters (3 women and 12 men, mean age 28.4 ± 8.5 years) worked up to a one repetition maximum (1RM) on each lift. Rating of perceived exertion was recorded on all sets, and the ACV was recorded for all sets performed at 80% of estimated 1RM and higher, up to 1RM. Rating of perceived exertion at 1RM on squat, bench press, and deadlift was 9.6 ± 0.5, 9.7 ± 0.4, and 9.6 ± 0.5, respectively and was not significantly different (p > 0.05). The ACV at 1RM on squat, bench press and deadlift was 0.23 ± 0.05, 0.10 ± 0.04, and 0.14 ± 0.05 m·second, respectively. Squat was faster than both bench press and deadlift (p > 0.001), and deadlift was faster than bench press (p = 0.05). Very strong relationships (r = 0.88-0.91) between percentage 1RM and RPE were observed on each lift. The ACV showed strong (r = -0.79 to -0.87) and very strong (r = -0.90 to 92) inverse relationships with RPE and percentage 1RM on each lift, respectively. We conclude that RPE may be a useful tool for prescribing intensity for squat, bench press, and deadlift in powerlifters, in addition to traditional methods such as percentage of 1RM. Despite high correlations between percentage 1RM and ACV, a "velocity load profile" should be developed to prescribe intensity on an individual basis with appropriate accuracy.
Lenetsky, S, Brughelli, M, Nates, RJ, Cross, MR, and Lormier, AV. Variability and reliability of punching impact kinetics in untrained participants and experienced boxers. J Strength Cond Res 32(7): 1838-1842, 2017-Striking impact kinetics are central to performance in combat sports. Despite a multitude of assessment, few in the literature have explored the variability and reliability of punching force assessment. Consequently, this study assessed the variability and reliability of measured punching impact kinetics in untrained and experienced boxers using a recently developed and validated method of striking dynamometry. Intrasession (both cohorts) and intersession (untrained only) measures of impulse, peak, and mean force were determined across 4 punch types (jabs, crosses, lead, and rear hand hooks) using coefficient of variation (CV), intraclass correlation coefficients (ICCs), and typical error of measurement (TEM). Moderate (ICC <0.67 or CV >10%) to small (ICC >0.67 and CV <10%) variability was found for intrasession results of both groups, the majority having small variability. Intersession findings of the untrained cohort had a similar spread of variability, but with the majority exhibiting moderate variability. All variables except for mean force of the cross in the experienced boxer cohort were found to exhibit a "moderated" magnitude of reliability determined by standardized TEM scores (TEM = 0.60-1.19) during intrasession testing. All variables had moderate reliability during intersession. This method was found to have acceptable variability and reliability when monitoring punching impact kinetics.
Lenetsky, S, Brughelli, M, Nates, RJ, Neville, JG, Cross, MR, and Lormier, AV. Defining the phases of boxing punches: A mixed-method approach. J Strength Cond Res 34(4): 1040–1051, 2020—Current research on punching in boxing has explored both kinematic and kinetic variables; however, there is no shared structure in the literature to describe these findings. A common method used to provide a shared structure in other sporting tasks is the definition of movement phases. To define the phases of 4 punches used in boxing (lead punches and rear straight and hook punches), 10 experienced and competitive boxers (age = 25.6 ± 5.97 years, height = 179.5 ± 7.72 cm, body mass = 95.66 ± 21.82 kg, and years training = 10.3 ± 5.97 years) were tested while performing maximal-effort punches. Ground reaction forces (GRFs), electromyographic, high-speed video (HSV), and striking dynamometry data were collected during all punches. A mixed-method approach was used to define the phases for each punch type based on the GRF measurements and impact timing from the striking dynamometer. Electromyographic and HSV data were then used to develop a more holistic understanding of punching actions by elaborating on the description of each phase. The final outcome of this approach has produced definitions for the phases of straight and hook punches, a greater qualitative understanding of said punches, and most importantly, a structure for current and future punching-related research, and a context to improve coach/sport scientist communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.