Low temperature 3D printing of calcium phosphate scaffolds holds great promise for fabricating synthetic bone graft substitutes with enhanced performance over traditional techniques. Many design parameters, such as the binder solution properties, have yet to be optimized to ensure maximal biocompatibility and osteoconductivity with sufficient mechanical properties. This study tailored the phosphoric acid-based binder solution concentration to 8.75 wt% to maximize cytocompatibility and mechanical strength, with a supplementation of Tween 80 to improve printing. To further enhance the formulation, collagen was dissolved into the binder solution to fabricate collagen-calcium phosphate composites. Reducing the viscosity and surface tension through a physiologic heat treatment and Tween 80, respectively, enabled reliable thermal inkjet printing of the collagen solutions. Supplementing the binder solution with 1–2 wt% collagen significantly improved maximum flexural strength and cell viability. To assess the bone healing performance, we implanted 3D printed scaffolds into a critically sized murine femoral defect for 9 weeks. The implants were confirmed to be osteoconductive, with new bone growth incorporating the degrading scaffold materials. In conclusion, this study demonstrates optimization of material parameters for 3D printed calcium phosphate scaffolds and enhancement of material properties by volumetric collagen incorporation via inkjet printing.
Crystallization inhibits metallic glass forming in the super cooled liquid state and can be avoided if sufficiently fast heating rates can be obtained, but becomes increasingly difficult for marginal glass formers. We propose that dynamic pressing can enhance formability, and demonstrate that density of an iron-based marginal glass forming alloy (Fe 49.7 Cr 17.1 Mn 1.9 Mo 7.4 W 1.6 B 15.2 C 3.8 Si 2.4 ) can be enhanced by coupling loading rate to fast heating rate during spark plasma sintering. We also describe the transformation kinetics for devitrification in a time-temperature-crystallinity diagram. The combination of coupled loading/fast heating and the time-temperature-crystallinity diagram define the processing requirements for obtaining a dense X-ray amorphous structure and can also be used to design a wide variety of dense in situ composites. Finally, we demonstrate that the design approach also applies to ex situ composites by adding microcrystalline W or Ta, enabling systematic control of atomic-, nano-, and micro-structure. This multi-scale structure control of bulk metallic glass composites has implications for developing a fundamental understanding of structure-property relationships. We expect this general approach will be applicable to other bulk metallic glass composites, and especially beneficial for marginal glass formers that are otherwise difficult to process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.