BACKGROUNDPatients with metastatic sarcomas have poor outcomes and although the disease may be amenable to immunotherapies, information regarding the immunologic profiles of soft tissue sarcoma (STS) subtypes is limited.METHODSThe authors identified patients with the common STS subtypes: leiomyosarcoma, undifferentiated pleomorphic sarcoma (UPS), synovial sarcoma (SS), well‐differentiated/dedifferentiated liposarcoma, and myxoid/round cell liposarcoma. Gene expression, immunohistochemistry for programmed cell death protein (PD‐1) and programmed death‐ligand 1 (PD‐L1), and T‐cell receptor Vβ gene sequencing were performed on formalin‐fixed, paraffin‐embedded tumors from 81 patients. Differences in liposarcoma subsets also were evaluated.RESULTSUPS and leiomyosarcoma had high expression levels of genes related to antigen presentation and T‐cell infiltration. UPS were found to have higher levels of PD‐L1 (P≤.001) and PD‐1 (P≤.05) on immunohistochemistry and had the highest T‐cell infiltration based on T‐cell receptor sequencing, significantly more than SS, which had the lowest (P≤.05). T‐cell infiltrates in UPS also were more oligoclonal compared with SS and liposarcoma (P≤.05). A model adjusted for STS histologic subtype found that for all sarcomas, T‐cell infiltration and clonality were highly correlated with PD‐1 and PD‐L1 expression levels (P≤.01).CONCLUSIONSIn the current study, the authors provide the most detailed overview of the immune microenvironment in sarcoma subtypes to date. UPS, which is a more highly mutated STS subtype, provokes a substantial immune response, suggesting that it may be well suited to treatment with immune checkpoint inhibitors. The SS and liposarcoma subsets are less mutated but do express immunogenic self‐antigens, and therefore strategies to improve antigen presentation and T‐cell infiltration may allow for successful immunotherapy in patients with these diagnoses. Cancer 2017;123:3291‐304. © 2017 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Purpose: Pancreatic ductal adenocarcinoma (PDA) is rarely cured, and single-agent immune checkpoint inhibition has not demonstrated clinical benefit despite the presence of large numbers of CD8+ T cells. We hypothesized that tumor-infiltrating CD8+ T cells harbor latent anti-tumor activity that can be reactivated using combination immunotherapy. Experimental Design: Preserved human PDA specimens were analyzed using multiplex immunohistochemistry (IHC) and T cell receptor (TCR) sequencing. Fresh tumor was treated in organotypic slice culture to test the effects of combination PD-1 and CXCR4 blockade. Slices were analyzed using IHC, flow cytometry and live fluorescent microscopy to assess tumor kill, in addition to T cell expansion and mobilization. Results: Multiplex IHC demonstrated fewer CD8+ T cells in juxtatumoral stroma containing carcinoma cells than in stroma devoid of them. Using TCR sequencing, we found clonal expansion in each tumor; high frequency clones had multiple DNA rearrangements coding for the same amino acid binding sequence, which suggests response to common tumor antigens. Treatment of fresh human PDA slices with combination PD-1 and CXCR4 blockade led to increased tumor cell death concomitant with lymphocyte expansion. Live microscopy after combination therapy demonstrated CD8+ T cell migration into the juxtatumoral compartment and rapid increase in tumor cell apoptosis. Conclusion: Endogenous tumor-reactive T cells are present within the human PDA tumor microenvironment and can be reactivated by combined blockade of PD-1 and CXCR4. This provides a new basis for the rational selection of combination immunotherapy for PDA.
Soft tissue sarcomas (STS) are rare malignancies of mesenchymal cell origin that display a heterogenous mix of clinical and pathologic characteristics. STS can develop from fat, muscle, nerves, blood vessels, and other connective tissues. The evaluation and treatment of patients with STS requires a multidisciplinary team with demonstrated expertise in the management of these tumors. The complete NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Soft Tissue Sarcoma provide recommendations for the diagnosis, evaluation, and treatment of extremity/superficial trunk/head and neck STS, as well as retroperitoneal/intra-abdominal STS, desmoid tumors, and rhabdomyosarcoma. This portion of the NCCN Guidelines discusses general principles for the diagnosis and treatment of retroperitoneal/intra-abdominal STS, outlines treatment recommendations, and reviews the evidence to support the guidelines recommendations.
ObjectiveThe immune response to pancreatic ductal adenocarcinoma (PDA) may play a role in defining its uniquely aggressive biology; therefore, we sought to clearly define the adaptive immune infiltrate in PDA.DesignWe used immunohistochemistry and flow cytometry to characterize the immune infiltrate in human PDA and compared our findings to the patients’ peripheral blood.ResultsIn contrast to the myeloid cell predominant infiltrate seen in murine models, T cells comprised the majority of the hematopoietic cell component of the tumor stroma in human PDA. Most intratumoral CD8+ T cells exhibited an antigen-experienced effector memory cell phenotype and were capable of producing IFN-γ. CD4+ regulatory T cells (Treg) and IL-17 producing T helper cells were significantly more prevalent in tumor than in blood. Consistent with the association with reduced survival in previous studies, we observed higher frequencies of both myeloid cells and Treg in poorly differentiated tumors. The majority of intratumoral T cells expressed the co-inhibitory receptor programmed death-1 (PD-1), suggesting one potential mechanism through which PDA may evade antitumor immunity. Successful multimodal neoadjuvant therapy altered the immunoregulatory balance and was associated with reduced infiltration of both myeloid cells and Treg.ConclusionOur data show that human PDA contains a complex mixture of inflammatory and regulatory immune cells, and that neoadjuvant therapy attenuates the infiltration of intratumoral cells associated with immunosuppression and worsened survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.