Data augmentation is a highly effective approach for improving performance in deep neural networks. The standard view is that it creates an enlarged dataset by adding synthetic data, which raises a problem when combining it with Bayesian inference: how much data are we really conditioning on? This question is particularly relevant to recent observations linking data augmentation to the cold posterior effect. We investigate various principled ways of finding a log-likelihood for augmented datasets. Our approach prescribes augmenting the same underlying image multiple times, both at test and train-time, and averaging either the logits or the predictive probabilities. Empirically, we observe the best performance with averaging probabilities. While there are interactions with the cold posterior effect, neither averaging logits or averaging probabilities eliminates it. IntroductionData augmentation (Shorten & Khoshgoftaar, 2019) is a fundamental technique for obtaining high performance in modern neural networks (NNs). In computer vision, data augmentation involves creating synthetic training examples by making small modifications, such as a rotation or crop, to the input image.At the same time, Bayesian inference allows us to reason about uncertainty in neural network weights (MacKay, 1992;Welling & Teh, 2011;Blundell et al., 2015;Fortuin, 2021) given limited data. Bayesian inference is particularly important in safety-critical settings such as self-driving cars or medical imaging where it is crucial to be able to hand over to a human when uncertainty is too large. * equal contribution † equal contributionPreprint. Under review.
Epidemiology models are central to understanding and controlling large-scale pandemics. Several epidemiology models require simulation-based inference such as Approximate Bayesian Computation (ABC) to fit their parameters to observations. ABC inference is highly amenable to efficient hardware acceleration. In this work, we develop parallel ABC inference of a stochastic epidemiology model for COVID-19. The statistical inference framework is implemented and compared on Intel’s Xeon CPU, NVIDIA’s Tesla V100 GPU, Google’s V2 Tensor Processing Unit (TPU), and the Graphcore’s Mk1 Intelligence Processing Unit (IPU), and the results are discussed in the context of their computational architectures. Results show that TPUs are 3×, GPUs are 4×, and IPUs are 30× faster than Xeon CPUs. Extensive performance analysis indicates that the difference between IPU and GPU can be attributed to higher communication bandwidth, closeness of memory to compute, and higher compute power in the IPU. The proposed framework scales across 16 IPUs, with scaling overhead not exceeding 8% for the experiments performed. We present an example of our framework in practice, performing inference on the epidemiology model across three countries and giving a brief overview of the results.
Accurately predicting when and where ambulance call-outs occur can reduce response times and ensure the patient receives urgent care sooner. Here we present a novel method for ambulance demand prediction using Gaussian process regression (GPR) in time and geographic space. The method exhibits superior accuracy to MEDIC, a method which has been used in industry. The use of GPR has additional benefits such as the quantification of uncertainty with each prediction, the choice of kernel functions to encode prior knowledge and the ability to capture spatial correlation. Measures to increase the utility of GPR in the current context, with large training sets and a Poisson-distributed output, are outlined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.