Maintaining the abundance of carbon stored aboveground in Amazon forests is central to any comprehensive climate stabilization strategy. Growing evidence points to indigenous peoples and local communities (IPLCs) as buffers against large-scale carbon emissions across a nine-nation network of indigenous territories (ITs) and protected natural areas (PNAs). Previous studies have demonstrated a link between indigenous land management and avoided deforestation, yet few have accounted for forest degradation and natural disturbances—processes that occur without forest clearing but are increasingly important drivers of biomass loss. Here we provide a comprehensive accounting of aboveground carbon dynamics inside and outside Amazon protected lands. Using published data on changes in aboveground carbon density and forest cover, we track gains and losses in carbon density from forest conversion and degradation/disturbance. We find that ITs and PNAs stored more than one-half (58%; 41,991 MtC) of the region’s carbon in 2016 but were responsible for just 10% (−130 MtC) of the net change (−1,290 MtC). Nevertheless, nearly one-half billion tons of carbon were lost from both ITs and PNAs (−434 MtC and −423 MtC, respectively), with degradation/disturbance accounting for >75% of the losses in 7 countries. With deforestation increasing, and degradation/disturbance a neglected but significant source of region-wide emissions (47%), our results suggest that sustained support for IPLC stewardship of Amazon forests is critical. IPLCs provide a global environmental service that merits increased political protection and financial support, particularly if Amazon Basin countries are to achieve their commitments under the Paris Climate Agreement.
Significance Despite increased interest in land-based carbon storage as a climate solution, there are physical limits on how much additional carbon can be incorporated into terrestrial ecosystems. To effectively determine where and how to act, jurisdictions need robust data illustrating the magnitude and distribution of opportunities to increase carbon storage, as well as information on the actions available to achieve that storage. Here, we provide globally consistent maps for directing additional carbon storage under current and future climate, as well as a framework for determining how that storage could be gained through restoration, improved management, or maintenance of woody biomass and soil organic matter. Our estimates provide an upper bound on how improved land stewardship can mitigate the climate crisis.
Carbon losses from forest degradation and disturbances are significant and growing sources of emissions in the Brazilian Amazon. Between 2003 and 2019, degradation and disturbance accounted for 44% of forest carbon losses in the region, compared with 56% from deforestation (forest clearing). We found that land tenure played a decisive role in explaining these carbon losses, with Undesignated Public Forests and Other Lands (e.g., private properties) accounting for the majority (82%) of losses during the study period. Illegal deforestation and land grabbing in Undesignated Public Forests widespread and increasingly are important drivers of forest carbon emissions from the region. In contrast, indigenous Territories and Protected Natural Areas had the lowest emissions, demonstrating their effectiveness in preventing deforestation and maintaining carbon stocks. These trends underscore the urgent need to develop reliable systems for monitoring and reporting on carbon losses from forest degradation and disturbance. Together with improved governance, such actions will be crucial for Brazil to reduce pressure on standing forests; strengthen Indigenous land rights; and design effective climate mitigation strategies needed to achieve its national and international climate commitments.
Indigenous Territories (ITs) with less centralized forest governance than Protected Areas (PAs) may represent cost-effective natural climate solutions to meet the Paris agreement. However, the literature has been limited to examining the effect of ITs on deforestation, despite the influence of anthropogenic degradation. Thus, little is known about the temporal and spatial effect of allocating ITs on carbon stocks dynamics that account for losses from deforestation and degradation. Using Amazon Basin countries and Panama, this study aims to estimate the temporal and spatial effects of ITs and PAs on carbon stocks. To estimate the temporal effects, we use annual carbon density maps, matching analysis, and linear mixed models. Furthermore, we explore the spatial heterogeneity of these estimates through geographic discontinuity designs, allowing us to assess the spatial effect of ITs and PAs boundaries on carbon stocks. The temporal effects highlight that allocating ITs preserves carbon stocks and buffer losses as well as allocating PAs in Panama and Amazon Basin countries. The geographic discontinuity designs reveal that ITs’ boundaries secure more extensive carbon stocks than their surroundings, and this difference tends to increase towards the least accessible areas, suggesting that indigenous land use in neotropical forests may have a temporarily and spatially stable impact on carbon stocks. Our findings imply that ITs in neotropical forests support Nationally Determined Contributions (NDCs) under the Paris Agreement. Thus, Indigenous peoples must become recipients of countries’ results-based payments.
The 6.7 M ha Tongass National Forest in southeast Alaska, USA, supports a world-class salmon fishery, is one of the world’s most intact temperate rainforests, and is recognized for exceptional levels of carbon stored in woody biomass. We quantified biomass and soil organic carbon (C) by land use designation, Inventoried Roadless Areas (IRAs), young and productive old-growth forests (POGs), and 77 priority watersheds. We used published timber harvest volumes (roundwood) to estimate C stock change across five time periods from early historical (1909–1951) through future (2022–2100). Total soil organic and woody biomass C in the Tongass was 2.7 Pg, representing ~20% of the total forest C stock in the entire national forest system, the equivalent of 1.5 times the 2019 US greenhouse gas emissions. IRAs account for just over half the C, with 48% stored in POGs. Nearly 15% of all C is within T77 watersheds, >80% of which overlaps with IRAs, with half of that overlapping with POGs. Young growth accounted for only ~5% of the total C stock. Nearly two centuries of historical and projected logging would release an estimated 69.5 Mt CO2e, equivalent to the cumulative emissions of ~15 million vehicles. Previously logged forests within IRAs should be allowed to recover carbon stock via proforestation. Tongass old growth, IRAs, and priority watersheds deserve stepped-up protection as natural climate solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.