Localized tumor implantation of the ventral abdominal wall was found at 2, 5, and 8 months following percutaneous ultrasound-guided fine-needle aspiration biopsy (FNAB) of transitional carcinoma of the bladder, urethra, or prostate in 3 dogs. To our knowledge this complication has not been reported in dogs following FNAB. Despite the rarity of needle-tract implantation, the potential for this complication with transitional cell carcinomas is apparently not negligible and warrants consideration. We recommend traumatic urethral catheterization to obtain a cytologic diagnosis of potential transitional cell carcinomas of the lower urinary tract or prostate whenever possible until more information becomes available. However, needle-track implantation is so rare that it should not influence the decision to perform a percutaneous FNAB if the urethra cannot be catheterized.
The objective of this retrospective study was to estimate using magnetic resonance imaging the size range of the pituitary gland in cats who had no evidence of pituitary disease. The pituitary gland was measured from transverse and sagittal magnetic resonance postgadolinium T1-weighted images in 17 cats. The cats were 0.83 to 15 years of age and weighed between 2.9 and 6.5 kg. Linear pituitary measurements were performed on a dedicated workstation using electronic calipers. Mean (+/- standard deviation) pituitary gland length was 0.54 cm (+/- 0.06 cm) and mean width was 0.50 cm (+/- 0.08 cm). Mean pituitary gland height measured on sagittal images was 0.34 cm (+/- 0.05) and measured on transverse images was 0.32 cm (+/- 0.04 cm). Mean pituitary volume was 0.05 cm3 (+/- 0.01 cm3). There was no significant correlation between cat weight (kg) and pituitary volume or age and pituitary volume. The pituitary gland appearance varied on pre- and postcontrast T1-weighted images. On the precontrast images, the majority of pituitary glands had a mixed signal intensity. On postcontrast images, uniform pituitary gland enhancement was seen commonly.
The objective of this work was to compare the accuracy of radiographs and magnetic resonance imaging (MRI) for estimating appendicular osteosarcoma margins. The accuracy of computed tomography (CT) and bone scintigraphy was also assessed when these studies were available. Eight dogs with appendicular osteosarcoma underwent radiographic and MRI of affected limbs. In addition, bone scintigraphy was performed in six dogs and CT examination was performed in five dogs. Two observers jointly measured tumor length on all imaging studies. Correlative gross and histologic evaluation of all affected limbs was performed to determine tumor extent as measured from the nearest articular surface. Results from imaging studies were compared to gross and microscopic morphometry findings to determine the accuracy of each modality for determining tumor boundaries. MRI images were accurate with a mean overestimation of actual tumor length of 3 +/- 13%. T1-weighted non-contrast images were superior in identifying intramedullary tumor margins in most instances whereas contrast-enhanced images provided supplemental information in two dogs. Lateromedial and craniocaudal radiographs overestimated tumor length by 17 +/- 28% and 4 +/- 26%, respectively. Scintigraphy and CT overestimated tumor margins by 14 +/- 28% and 27 +/- 36%, respectively. MRI appears to be an accurate diagnostic imaging modality in determining intramedullary osteosarcoma boundaries. MRI should be considered as part of a pre-operative assessment of appendicular osteosarcoma, particularly when a limb-sparing procedure is contemplated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.