ABSTRAK Sidik jari merupakan biometrik yang sering digunakan dalam teknologi autentikasi. Terdapat banyak metode yang bisa digunakan untuk membuat sistem klasifikasi sidik jari. Maximum Curvature Points (MCP) umumnya digunakan untuk ekstraksi citra pembuluh darah jari yang juga digunakan sebagai autentikasi. Pada penelitian ini akan diuji performansi dari metode MCP jika dibandingkan dengan metode yang umum digunakan pada proses pengenalan sidik jari, yaitu Hit and Miss Transform (HMT). Perbedaan domain, yaitu spasial pada Normalized Cross Correlation (NCC) dan frekuensi pada Phase Correlation (PC) dalam proses matching ternyata juga mempengaruhi performansi sistem. Hasilnya menunjukkan bahwa penggunakaan metode MHTNCC memiliki tingkat akurasi yang lebih baik dalam pengenalan sidik jari yaitu 92% untuk pengenalan ibu jari dan 98% untuk pengenalan jari telunjuk, dibandingkan dengan menggunakan metode MCP-PC yang hanya memiliki tingkat akurasi sebesar 88% untuk pengenalan ibu jari dan 92% untuk pengenalan jari telunjuk. Kata kunci: sidik jari, MCP, HMT, phase correlation, normalized cross correlation ABSTRACT Fingerprint is one of the biometric systems that are often used in an authentication technology. There are many methods that can be used to develop fingerprint’s classification system. Maximum Curvature Points (MCP) are generally used for finger vein image extraction which is also used as authentication. MCP performance will be compared to common method in finger print recognition, Hit and Miss Transform (HMT). Using different domains, spatial in Normalized Cross Correlation (NCC) and frequency in Phase Correlation (PC) affect the system performance. The results show that the application of HMT-NCC more accurate in terms of finger print’s recognition, 92% in accuracy for thumb recognition and 98% accuracy for index finger recognition, while MCP-PC is only reach 88% in accuracy for thumb recognition and 92% accuracy for index finger recognition. Keywords: fingerprint, MCP, HMT, phase correlation, normalized cross correlation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.