Repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising tool to induce plastic changes that are thought in some cases to reflect N -methyl-d-aspartate-sensitive changes in synaptic efficacy. As in animal experiments, there is some evidence that the sign of rTMS-induced plasticity depends on the prior history of cortical activity, conforming to the Bienenstock-Cooper-Munro (BCM) theory. However, experiments exploring these plastic changes have only examined priming-induced effects on a limited number of rTMS protocols, often using designs in which the priming alone had a larger effect than the principle conditioning protocol. The aim of this study was to introduce a new rTMS protocol that gives a broad range of after-effects from suppression to facilitation and then test how each of these is affected by a priming protocol that on its own has no effect on motor cortical excitability, as indexed by motor-evoked potential (MEP). Repeated trains of four monophasic TMS pulses (quadripulse stimulation: QPS) separated by interstimulus intervals of 1.5-1250 ms produced a range of after-effects that were compatible with changes in synaptic plasticity. Thus, QPS at short intervals facilitated MEPs for more than 75 min, whereas QPS at long intervals suppressed MEPs for more than 75 min. Paired-pulse TMS experiments exploring intracortical inhibition and facilitation after QPS revealed effects on excitatory but not inhibitory circuits of the primary motor cortex. Finally, the effect of priming protocols on QPS-induced plasticity was consistent with a BCM-like model of priming that shifts the crossover point at which synaptic plasticity reverses from depression to potentiation. The broad range of after-effects produced by the new rTMS protocol opens up new possibilities for detailed examination of theories of metaplasticity in humans.
Motor cortical plasticity induced by repetitive transcranial magnetic stimulation (rTMS) sometimes depends on the prior history of neuronal activity. These effects of preceding stimulation on subsequent rTMS-induced plasticity have been suggested to share a similar mechanism to that of metaplasticity, a homeostatic regulation of synaptic plasticity. To explore metaplasticity in humans, many investigations have used designs in which both priming and conditioning are applied over the primary motor cortex (M1), but the effects of priming stimulation over other motor-related cortical areas have not been well documented. Since the supplementary motor area (SMA) has anatomical and functional cortico-cortical connections with M1, here we studied the homeostatic effects of priming stimulation over the SMA on subsequent rTMS-induced plasticity of M1. For priming and subsequent conditioning, we employed a new rTMS protocol, quadripulse stimulation (QPS), which produces a broad range of motor cortical plasticity depending on the interval of the pulses within a burst. The plastic changes induced by QPS at various intervals were altered by priming stimulation over the SMA, which did not change motor-evoked potential sizes on its own but specifically modulated the excitatory I-wave circuits. The data support the view that the homeostatic changes are mediated via mechanisms of metaplasticity and highlight an important interplay between M1 and SMA regarding homeostatic plasticity in humans.
Using the paired-pulse paradigm, transcranial magnetic stimulation (TMS) has revealed much about the human primary motor cortex (M1). A preceding subthreshold conditioning stimulus (CS) inhibits the excitability of the motor cortex, which is named short-interval intracortical inhibition (SICI). In contrast, facilitation is observed when the first pulse (S1) is followed by a second one at threshold (S2), named short-interval intracortical facilitation (SICF). SICI and SICF have been considered to be mediated by different neural circuits within M1, but more recent studies reported relations between them. In this study, we performed triple-pulse stimulation consisting of CS-S1-S2 to further explore putative interactions between these two effects. Three intensities of CS (80-120% of active motor threshold: AMT) and two intensities of S2 (120 and 140% AMT) were combined. The SICF in the paired-pulse paradigm exhibited clear facilitatory peaks at ISIs of 1.5 and 3 ms. The second peak at 3 ms was significantly suppressed by triple-pulse stimulation using 120% AMT CS, although the first peak was almost unaffected. Our present results obtained using triple-pulse stimulation suggest that each peak of SICF is differently modulated by different intensities of CS. The suppression of the second peak might be ascribed to the findings in the paired-pulse paradigm that CS mediates SICI by inhibiting later I waves such as I3 waves and that the second peak of SICF is most probably related to I3 waves. We propose that CS might inhibit the second peak of SICF at the interneurons responsible for I3 waves.
Postural tremor is a common initial symptom in spinal and bulbar muscular atrophy (SBMA), but its pathophysiological mechanisms remain to be studied. This study was undertaken to examine the physiological mechanisms underlying postural tremor in SBMA. For eight patients (36-63 years old) with genetically confirmed SBMA, we recorded surface electromyograms (EMGs) from the forearm muscles and hand movements with an accelerometer (ACC) while maintaining a posture with and without a weight load. We then analyzed their power spectra and coherence. The peak tremor frequency was 6-9 Hz in seven patients and 2-3 Hz in one patient. Oscillatory movements were associated with EMG activity in five patients, but not in three patients. Weight loads and postural changes affected the tremor frequency in all patients. Tremor was classified as "reflex tremor" in five patients and "mechanical tremor" in three patients. These results suggest that peripheral factors play important roles in tremor genesis in SBMA, although its clinical features resemble essential tremor. Subclinical sensory disturbance or a decrease of motor unit numbers might be candidates for such peripheral factors contributing to tremor genesis in SBMA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.