Purpose To determine whether arterial spin-labeling (ASL) magnetic resonance (MR) imaging could be used to identify changes in cerebral blood flow (CBF), collateral blood flow, and anastomosis site patency after revascularization in patients with moyamoya disease. Materials and Methods This retrospective study was conducted in 145 patients with moyamoya disease who underwent middle cerebral artery (MCA)-superficial temporal artery anastomosis. Preoperative, early postoperative, and late postoperative ASL and digital subtraction angiography images were analyzed. In the MCA territory, absolute CBF (hereafter, CBF) and normalized CBF values adjusted to nonanastomosis side (hereafter, nCBF) and to cerebellum (hereafter, nCBF) were calculated. Collateral grading in the MCA territory was assessed according to Alberta Stroke Program Early CT Score methodology, and anastomosis site patency were also assessed. Changes in CBF were compared by using one-way analysis of variance with Bonferroni correction for multiple comparisons. Intermodality agreement was determined by κ statistics. Results Significant increases in CBF, nCBF, and nCBF were found after revascularization (preoperative and postoperative values of CBF, 35.2 mL/100 g per minute ± 7.8 [mean ± standard deviation] and 51.5 mL/100 g per minute ± 12.0; nCBF, 0.73 mL/100 g per minute ± 0.14 and 1.01 mL/100 g per minute ± 0.18; nCBF, 0.74 mL/100 g per minute ± 0.12 and 1.12 mL/100 g per minute ± 0.16; all P < .001). Agreements for collateral grading and anastomosis patency between ASL MR imaging and digital subtraction angiography were moderate to good, with weighted κ values of 0.77 (95% confidence interval: 0.73, 0.81) and 0.57 (95% confidence interval: 0.37, 0.76), respectively. Conclusion ASL MR imaging can be used to identify perfusion changes in patients with moyamoya disease after revascularization as a noninvasive monitoring tool.
Objective To determine the correlation between cerebral blood flow (CBF) on arterial spin labeling (ASL) MRI and the degree of postoperative revascularization assessed on digital subtraction angiography in children with moyamoya disease (MMD). Materials and Methods Twenty-one children (9 boys and 12 girls; mean age, 8.4 ± 3.6 years; age range, 3–16 years) with MMD who underwent both pseudocontinuous ASL MRI at 1.5T and catheter angiography before and after superficial temporal artery encephaloduroarteriosynangiosis were included in this retrospective study. The degree of revascularization in the middle cerebral artery (MCA) territory was evaluated on external carotid angiography and was graded on a 3-point scale. On ASL CBF maps, regions of interest were manually drawn over the MCA territory of the operated side at the level of the centrum semi-ovale and over the cerebellum. The normalized CBF (nCBF) was calculated by dividing the CBF of the MCA territory by the CBF of the cerebellum. Changes in nCBFs were calculated by subtracting the preoperative nCBF values from the postoperative nCBF values. The correlation between nCBF changes measured with ASL and the revascularization grade from direct angiography was evaluated. Results The nCBF value on the operated side increased after the operation ( p = 0.001). The higher the degree of revascularization, the greater the nCBF change was: poor revascularization (grade 1), −0.043 ± 0.212; fair revascularization (grade 2), 0.345 ± 0.176; good revascularization (grade 3), 0.453 ± 0.182 ( p = 0.005, Jockheere-Terpstra test). The interobserver agreement was excellent for the measured CBF values of the three readers (0.91–0.97). Conclusion The nCBF values of the MCA territory obtained from ASL MRI increased after the revascularization procedure in children with MMD, and the degree of nCBF change showed a significant correlation with the degree of collateral formation evaluated via catheter angiography.
Objective To compare image qualities between vendor-neutral and vendor-specific hybrid iterative reconstruction (IR) techniques for abdominopelvic computed tomography (CT) in young patients. Materials and Methods In phantom study, we used an anthropomorphic pediatric phantom, age-equivalent to 5-year-old, and reconstructed CT data using traditional filtered back projection (FBP), vendor-specific and vendor-neutral IR techniques (ClariCT; ClariPI) in various radiation doses. Noise, low-contrast detectability and subjective spatial resolution were compared between FBP, vendor-specific (i.e., iDose1 to 5; Philips Healthcare), and vendor-neutral (i.e., ClariCT1 to 5) IR techniques in phantom. In 43 patients (median, 14 years; age range 1–19 years), noise, contrast-to-noise ratio (CNR), and qualitative image quality scores of abdominopelvic CT were compared between FBP, iDose level 4 (iDose4), and ClariCT level 2 (ClariCT2), which showed most similar image quality to clinically used vendor-specific IR images (i.e., iDose4) in phantom study. Noise, CNR, and qualitative imaging scores were compared using one-way repeated measure analysis of variance. Results In phantom study, ClariCT2 showed noise level similar to iDose4 (14.68–7.66 Hounsfield unit [HU] vs. 14.78–6.99 HU at CT dose index volume range of 0.8–3.8 mGy). Subjective low-contrast detectability and spatial resolution were similar between ClariCT2 and iDose4. In clinical study, ClariCT2 was equivalent to iDose4 for noise (14.26–17.33 vs. 16.01–18.90) and CNR (3.55–5.24 vs. 3.20–4.60) ( p > 0.05). For qualitative imaging scores, the overall image quality ([reader 1, reader 2]; 2.74 vs. 2.07, 3.02 vs. 2.28) and noise (2.88 vs. 2.23, 2.93 vs. 2.33) of ClariCT2 were superior to those of FBP ( p < 0.05), and not different from those of iDose4 (2.74 vs. 2.72, 3.02 vs. 2.98; 2.88 vs. 2.77, 2.93 vs. 2.86) ( p > 0.05). Conclusion Vendor-neutral IR technique shows image quality similar to that of clinically used vendor-specific hybrid IR technique for abdominopelvic CT in young patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.