Semantic Web has recently gained traction with the use of Linked Open Data (LOD) on the Web. Although numerous state-of-the-art methodologies, standards, and technologies are applicable to the LOD cloud, many issues persist. Because the LOD cloud is based on graph-based resource description framework (RDF) triples and the SPARQL query language, we cannot directly adopt traditional techniques employed for database management systems or distributed computing systems. This paper addresses how the LOD cloud can be efficiently organized, retrieved, and evaluated. We propose a novel hybrid approach that combines the index and live exploration approaches for improved LOD join query performance. Using a two-step index structure combining a disk-based 3D R*-tree with the extended multidimensional histogram and flash memory-based k-d trees, we can efficiently discover interlinked data distributed across multiple resources. Because this method rapidly prunes numerous false hits, the performance of join query processing is remarkably improved. We also propose a hot-cold segment identification algorithm to identify regions of high interest. The proposed method is compared with existing popular methods on real RDF datasets. Results indicate that our method outperforms the existing methods because it can quickly obtain target results by reducing unnecessary data scanning and reduce the amount of main memory required to load filtering results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.