The earliest description of the discontinuous gas exchange cycle (DGC) in lepidopterous insects supported the hypothesis that the DGC serves to reduce water loss (hygric hypothesis) and facilitate gaseous exchange in hyperoxia/hypoxia (chthonic hypothesis). With technological advances, other insect orders were investigated, and both hypotheses were questioned. Thus, we conducted a meta-analysis to evaluate the merit of both hypotheses. This included 46 insect species in 24 families across nine orders. We also quantified the percent change in metabolic rates per °C change of temperature during the DGC. The DGC reduced water loss (−3.27 ± 0.88; estimate ± 95% confidence limits [95% CI]; p < 0.0001) in insects. However, the DGC does not favor gaseous exchange in hyperoxia (0.21 ± 0.25 [estimate ± 95% CI]; p = 0.12) nor hypoxia, but did favor gaseous exchange in normoxia (0.27 ± 0.26 [estimate ± 95% CI]; p = 0.04). After accounting for variation associated with order, family, and species, a phylogenetic model reflected that metabolic rate exhibited a significant, non-zero increase of 8.13% (± 3.48 95% CI; p < 0.0001) per °C increase in temperature. These data represent the first meta-analytic attempt to resolve the controversies surrounding the merit of adaptive hypotheses in insects.
The allures of city life have culminated in the rise of urban populations resulting in conditions that promote the establishment of certain insect pests. Globally, the public health significance of these urban insect pests is enormous, ranging from billions of dollars to loss of lives. Most chemical insecticides no longer provide the anticipated level of control, and significant insecticide resistance has been reported. Therefore, there has been a spike in interest for alternatives to conventional insecticides. Among them, natural products from plants such as essential oils (EOs) and essential oil components (EOCs) have enjoyed the most attention owing to widespread reports of efficacy and toxicity even against insecticide-resistant urban insects. Yet, there is no comprehensive synthesis on the extent and impact of the management of urban insects using EOs or EOCs. Such a review is highly relevant since it provides a means to assess the extent of progress made, shortfalls, limitations, and prospects. More so, we hope it can be used to make informed decisions and develop relevant policies reliably. We present the ranges of insecticidal effects of EOs, EOCs, and commercially available EO-based products from laboratory and field studies. Finally, we discuss the gaps in our knowledge and prospects for the sustainable use of EOs.
Toxicity profiles of four aliphatic (α-pinene, cyclononanone, limonene, nerolidol), four aromatic (β-thujaplicin, carvacrol, eugenol, tropolone) essential oil components (EOCs), and permethrin were investigated against three strains of German cockroach, Blattella germanica (L.). The strains include a susceptible strain (S), and two multi-resistant strains – strains D and E. Also, a synergism bioassay, using piperonyl butoxide (PBO) was conducted. The most toxic EOCs were aromatic EOCs carvacrol, eugenol, and tropolone, followed by aliphatic EOC limonene; all had LD50 values of <0.7 mg/µl. Four of the EOCs were equally toxic against all the strains, with carvacrol being the most toxic, followed by eugenol, tropolone, and α–pinene. The other four EOCs were more toxic against strain S than against the two resistant strains. Permethrin was significantly more toxic to strain S (LD50 = 0.056 µg/µl) compared with the resistant strains (D = 2.138 µg/µl, E = 1.730 µg/µl). Toxicity of aliphatic EOCs correlated positively with their molecular weight against strain E only, whereas both molecular weight and vapor pressure of aromatic EOCs correlated significantly with toxicity in all strains. Strain D exhibited the greatest resistance (RR of 6.7) to EOCs, and synergism to the aliphatic EOC cyclononanone. Clear synergism with PBO was observed in permethrin against resistant strains, but not in all of the EOCs, suggesting multiple resistance mechanisms in the resistant cockroaches. These findings give insight on the potential of EOCs to be incorporated as parts of an IPM approach to managing insecticide resistant German cockroaches.
Pesticide resistance is normally associated with genetic changes, resulting in varied responses to insecticides between different populations. There is little evidence of resistance to plant allelochemicals; it is likely that their efficacy varies between genetically diverse populations, which may lead to the development of resistance in the future. This study evaluated the response of Anopheles gambiae (larvae and adults) from spatially different populations to acetone extracts of two botanicals, Piper guineense and Eugenia aromatica. Mosquito samples from 10 locations within Akure metropolis in Southwest Nigeria were tested for variation in susceptibility to the toxic effect of botanical extracts. The spatial distribution of the tolerance magnitude (T.M.) of the mosquito populations to the botanicals was also mapped. The populations of An. gambiae manifested significant differences in their level of tolerance to the botanicals. The centre of the metropolis was the hot spot of tolerance to the botanicals. There was a significant positive correlation between the adulticidal activities of both botanicals and initial knockdown. Hence, knockdown by these botanicals could be a predictor of their subsequent mortality. In revealing variation in response to botanical pesticides, our work has demonstrated that any future use of botanicals as alternative environmentally friendly vector control chemicals needs to be closely monitored to ensure that resistance does not develop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.