In this study, a simple and efficient strategy for selective intracellular delivery of RNA therapeutics into target cancer cells was designed using direct complementary base pairing between chemically conjugated multimeric antisense strands and aptamer-incorporating sense strands.
A long chain microRNA-34a conjugate (lc-miRNA) was prepared by chemical crosslinking in order to improve entrapment efficiency into calcium phosphate nanoparticles (CaPs) and intracellular delivery. Thiol-modified miRNA at both terminal ends was chemically conjugated using crosslinkers to form lc-miRNA which was encapsulated within CaPs by a conventional co-precipitation method. Encapsulation efficiencies, physicochemical properties, and in vitro intracellular delivery efficiencies of the prepared linear polyethyleneimine (LPEI)-coated CaPs (LPEI-CaP) containing common miRNA and lc-miRNA were comparatively evaluated. The prepared lc-miRNA exhibited noticeably enhanced encapsulation efficiency during the CaP formulation process when compared to common miRNA. LPEI-CaP/lc-miRNAs consisted of nano-sized particles with great homogeneity and were observed to be successfully delivered into PC-3 cells. Fabricated LPEI-CaPs with duplex form of lc-miRNA (lc-miRNA-d) suppressed cancer cell proliferation as well as migration much more efficiently than those with duplex form of miRNA (miRNA-d). In addition, LPEI-CaP/lc-miRNA-d conferred negligible cytotoxicity on PC-3 cells. Chemical crosslinking of therapeutic miRNAs via a reducible linkage may allow more efficient encapsulation within CaPs as well as homogeneous particle formulation due to a higher spatial charge density than common miRNAs. The well-formulated LPEI-CaPs with lc-miRNA-d have the potential to provide superior miRNA transfection efficiency and inhibition of cancer proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.