A wide locking-range frequency divider with programmable input sensitivity is presented in this paper. The frequency divider consists of two D flip-flop-based current mode logic latches and a current control circuit. The current control circuit adjusts the current ratio of the sampling pair and the latching pair, while the total current is maintained as a constant. The current control circuit enables the self-oscillation frequency to be adapted to the input frequency. As a result, the divider has wide locking range below -10 dBm input level. The proposed frequency divider is implemented in 0.18 um standard CMOS technology, and the measurement results show a 169% frequency locking range of between 0.5 and 6 GHz at an input power of -10 dBm while consuming 7.2 mW from a 1.8 V supply voltage.Index Terms-current mode logic latch, frequency divider, divide-by-2, wide locking range
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.