The combination of magnetic and plasmonic properties using iron oxide/gold nanocomposite particles is crucial for the development of multimodal molecular imaging probes. In this study, iron oxide/gold composite nanoparticles (NanoIOGs) were synthesized via the on-site reduction of an Au precursor salt by polyethyleneimine (PEI) molecules attached to iron oxide nanoparticles (IONPs), and they were employed in magnetic resonance and dark-field microscope imaging. PEI is considered as a polymeric active stabilizer (PAS), acting as a reducing agent for the synthesis of Au and a dispersant for nanoparticles. When the IONPs prepared at the PEI concentration of 0.02 wt. % were used for the NanoIOG synthesis, Au nanoseeds were formed around the IONPs. The alloy clusters of IONPs/Au crystals were produced with further reduction depending on PEI concentration. The NanoIOGs exhibited superparamagnetism in a magnetic field and plasmonic response in a dark-field (DF) microscope. The sizes, morphologies, magnetizations, and r2 relaxivities of NanoIOGs were affected significantly by the amount of PEI added during the NanoIOG synthesis. It is suggested that the PAS-mediated synthesis is simple and effective, and can be applied to various nanostructured Au-metal alloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.